मराठी

If Y = Xn−1 Log X Then X2 Y2 + (3 − 2n) Xy1 is Equal to (A) −(N − 1)2 Y (B) (N − 1)2y - Mathematics

Advertisements
Advertisements

प्रश्न

If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to

पर्याय

  • −(n − 1)2 y

  • (n − 1)2y

  • −n2y

  •  n2y

MCQ

उत्तर

(a) −(n − 1)2 y

Here,

\[y = x^{n - 1} \log x\]

\[ \Rightarrow y_1 = \left( n - 1 \right) x^{n - 2} \log x + \frac{x^{n - 1}}{x}\]

\[ \Rightarrow y_1 = \frac{\left( n - 1 \right) x^{n - 1} \log x + x^{n - 1}}{x}\]

\[ \Rightarrow x y_1 = \left( n - 1 \right)y + x^{n - 1} \]

\[ \Rightarrow x y_2 + y_1 = \left( n - 1 \right) y_1 + \left( n - 1 \right) x^{n - 2} \]

\[ \Rightarrow x y_2 + y_1 = \left( n - 1 \right) y_1 + \frac{\left( n - 1 \right) x^{n - 1}}{x}\]

\[ \Rightarrow x^2 y_2 + x y_1 = x\left( n - 1 \right) y_1 + \left( n - 1 \right) x^{n - 1} \]

\[ \Rightarrow x^2 y_2 + x y_1 = x\left( n - 1 \right) y_1 + \left( n - 1 \right)\left\{ x y_1 - \left( n - 1 \right)y \right\}\]

\[ \Rightarrow x^2 y_2 + x y_1 = x\left( n - 1 \right) y_1 + \left( n - 1 \right)x y_1 - \left( n - 1 \right)^2 y\]

\[ \Rightarrow x^2 y_2 + x y_1 = 2x\left( n - 1 \right) y_1 - \left( n - 1 \right)^2 y\]

\[ \Rightarrow x^2 y_2 + x y_1 - 2x\left( n - 1 \right) y_1 = - \left( n - 1 \right)^2 y\]

\[ \Rightarrow x^2 y_2 + x y_1 \left( 1 - 2n + 2 \right) = - \left( n - 1 \right)^2 y\]

\[ \Rightarrow x^2 y_2 + \left( 3 - 2n \right)x y_1 = - \left( n - 1 \right)^2 y\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Higher Order Derivatives - Exercise 12.3 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 12 Higher Order Derivatives
Exercise 12.3 | Q 24 | पृष्ठ २४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If the function f(x)=2x39mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.

 


Differentiate the following functions from first principles log cosec x ?


Differentiate sin (3x + 5) ?


Differentiate \[e^{3 x} \cos 2x\] ?


Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?


Differentiate \[e^{\sin^{- 1} 2x}\] ?


If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?


If \[y = \sqrt{x^2 + a^2}\] prove that  \[y\frac{dy}{dx} - x = 0\] ?


Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?


If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that  \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?

 


If  \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?


If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?


If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?


If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?


If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?


Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?


Find  \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?

 


Find  \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?


If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?


\[\text{ If } x = e^{x/y} , \text{ prove that } \frac{dy}{dx} = \frac{x - y}{x\log x}\] ?

Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?


If  \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2 \sqrt{2}}, \frac{1}{\sqrt{2 \sqrt{2}}} \right)\] ?

Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?


Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ? 


Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?


Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.


If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?


If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?


If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?


The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .


If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .


If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?


If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to

 


If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 '' (x) − xf(x) =

 


If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to

 


Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) w . r . t . \sin^{- 1} \frac{2x}{1 + x^2},\]tan-11+x2-1x w.r.t. sin-12x1+x2, if x ∈ (–1, 1) .


Differentiate sin(log sin x) ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×