Advertisements
Advertisements
प्रश्न
If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?
उत्तर
\[\text{ We have, y } = x \sin^{- 1} x + \sqrt{1 - x^2}\]
Differentiate it with respect to x,
\[\frac{d y}{d x} = \frac{d}{dx}\left[ x \sin^{- 1} x + \sqrt{1 - x^2} \right]\]
\[ = \frac{d}{dx}\left( x \sin^{- 1} x \right) + \frac{d}{dx}\left( \sqrt{1 - x^2} \right)\]
\[ = \left[ x \frac{d}{dx} \sin^{- 1} x + \sin^{- 1} x\frac{d}{dx}\left( x \right) \right] + \frac{1}{2\sqrt{1 - x^2}}\frac{d}{dx}\left( 1 - x^2 \right) \]
\[ = \left[ \frac{x}{\sqrt{1 - x^2}} + \sin^{- 1} x \right] - \frac{2x}{2\sqrt{1 - x^2}}\]
\[ = \frac{x}{\sqrt{1 - x^2}} + \sin^{- 1} x - \frac{x}{\sqrt{1 - x^2}}\]
\[ = \sin^{- 1} x\]
\[\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles ecos x.
Differentiate log7 (2x − 3) ?
Differentiate \[3^{e^x}\] ?
Differentiate \[3^{x \log x}\] ?
Differentiate \[\log \left( cosec x - \cot x \right)\] ?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
Differentiate \[e^x \log \sin 2x\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?
Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?
Differentiate the following with respect to x:
\[\cos^{- 1} \left( \sin x \right)\]
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?
Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\] ?
If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?
If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?
Find \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
If \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?
If \[f'\left( x \right) = \sqrt{2 x^2 - 1} \text { and y } = f \left( x^2 \right)\] then find \[\frac{dy}{dx} \text { at } x = 1\] ?
If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?
The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to \[\cos^{- 1} x\] is ___________ .
If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\] then the derivative of f (x) in the interval [0, 7] is ____________ .
If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?
\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\]
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`
If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .