Advertisements
Advertisements
प्रश्न
Find \[\frac{dy}{dx}\] \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?
उत्तर
\[\text{ We have, y }= \left( \sin x \right)^{\cos x } + \left( \cos x \right)^{\sin x} \]
\[ \Rightarrow y = e^{\log \left( \sin x \right)^{\cos x }} + e^{\log \left( \cos x \right)^{\sin x }}\]
\[ \Rightarrow y = e^{\cos x \log\sin x} + e^{\sin x logcos x} \]
\[\text{ Differentiating with respect to x }, \]
\[\frac{dy}{dx} = \frac{d}{dx}\left( e^{\cos x \log\sin x} \right) + \frac{d}{dx}\left( e^{\sin x logcos x} \right)\]
\[ = e^{\cos x \log\sin x } \frac{d}{dx}\left( \cos x \log\sin x \right) + e^{ \sin x logcos x } \frac{d}{dx}\left( \sin x logcos x \right) \]
\[ = e^{\log \left(\sin x \right)^{\cos x}} \left[ \cos x\frac{d}{dx}\log\sin x + \log\sin x\frac{d}{dx}\left( \cos x \right) \right] + e^{\log \left(\cos x \right)^{\sin x}} \left[ \sin x\frac{d}{dx}\log\cos x + \log\cos x\frac{d}{dx}\left( \sin x \right) \right] \]\[ = \left( \sin x \right)^{\cos x} \left[ \cos x\frac{1}{\sin x}\frac{d}{dx}\left( \sin x \right) + \log\sin x \times \left( - \sin x \right) \right] + \left( \cos x \right)^{\sin x} \left[ \sin x\frac{1}{\cos x}\frac{d}{dx}\left( \cos x \right) + \log\cos x \times \left( \cos x \right) \right]\]
\[ = \left( \sin x \right)^{\cos x } \left[ \cot x \cos x - \sin x \log\sin x \right] + \left( \cos x \right)^{\sin x } \left[ \tan x\left( - \sin x \right) + \cos x \log\cos x \right]\]
\[ = \left( \sin x \right)^{\cos x} \left[ \cot x \cos x - \sin x \log\sin x \right] + \left( \cos x \right)^{\sin x} \left[ \cos x \log\cos x - \sin x \tan x \right]\]
APPEARS IN
संबंधित प्रश्न
Prove that `y=(4sintheta)/(2+costheta)-theta `
Differentiate the following functions from first principles ecos x.
Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?
Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?
Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?
If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?
If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?
If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?
If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Differentiate \[\left( \log x \right)^{ \log x }\] ?
If `y=(sinx)^x + sin^-1 sqrtx "then find" dy/dx`
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
If \[x = \frac{\sin^3 t}{\sqrt{\cos 2 t}}, y = \frac{\cos^3 t}{\sqrt{\cos t 2 t}}\] , find\[\frac{dy}{dx}\] ?
If \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?
Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?
If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?
If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .
\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .
If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .
Find the second order derivatives of the following function ex sin 5x ?
Find the second order derivatives of the following function e6x cos 3x ?
\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]
\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]
If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is
Differentiate `log [x+2+sqrt(x^2+4x+1)]`
f(x) = xx has a stationary point at ______.
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?