Advertisements
Advertisements
Question
Find \[\frac{dy}{dx}\] \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?
Solution
\[\text{ We have, y }= \left( \sin x \right)^{\cos x } + \left( \cos x \right)^{\sin x} \]
\[ \Rightarrow y = e^{\log \left( \sin x \right)^{\cos x }} + e^{\log \left( \cos x \right)^{\sin x }}\]
\[ \Rightarrow y = e^{\cos x \log\sin x} + e^{\sin x logcos x} \]
\[\text{ Differentiating with respect to x }, \]
\[\frac{dy}{dx} = \frac{d}{dx}\left( e^{\cos x \log\sin x} \right) + \frac{d}{dx}\left( e^{\sin x logcos x} \right)\]
\[ = e^{\cos x \log\sin x } \frac{d}{dx}\left( \cos x \log\sin x \right) + e^{ \sin x logcos x } \frac{d}{dx}\left( \sin x logcos x \right) \]
\[ = e^{\log \left(\sin x \right)^{\cos x}} \left[ \cos x\frac{d}{dx}\log\sin x + \log\sin x\frac{d}{dx}\left( \cos x \right) \right] + e^{\log \left(\cos x \right)^{\sin x}} \left[ \sin x\frac{d}{dx}\log\cos x + \log\cos x\frac{d}{dx}\left( \sin x \right) \right] \]\[ = \left( \sin x \right)^{\cos x} \left[ \cos x\frac{1}{\sin x}\frac{d}{dx}\left( \sin x \right) + \log\sin x \times \left( - \sin x \right) \right] + \left( \cos x \right)^{\sin x} \left[ \sin x\frac{1}{\cos x}\frac{d}{dx}\left( \cos x \right) + \log\cos x \times \left( \cos x \right) \right]\]
\[ = \left( \sin x \right)^{\cos x } \left[ \cot x \cos x - \sin x \log\sin x \right] + \left( \cos x \right)^{\sin x } \left[ \tan x\left( - \sin x \right) + \cos x \log\cos x \right]\]
\[ = \left( \sin x \right)^{\cos x} \left[ \cot x \cos x - \sin x \log\sin x \right] + \left( \cos x \right)^{\sin x} \left[ \cos x \log\cos x - \sin x \tan x \right]\]
APPEARS IN
RELATED QUESTIONS
Differentiate tan (x° + 45°) ?
Differentiate sin (log x) ?
Differentiate tan 5x° ?
Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?
Differentiate \[\frac{e^x \log x}{x^2}\] ?
Differentiate \[\log \left( cosec x - \cot x \right)\] ?
Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?
Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?
If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?
Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x^2 + y^2 \right)^2 = xy\] ?
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
Differentiate \[\sin \left( x^x \right)\] ?
Differentiate \[\left( \tan x \right)^{1/x}\] ?
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?
If \[x = \cos t \text{ and y } = \sin t,\] prove that \[\frac{dy}{dx} = \frac{1}{\sqrt{3}} \text { at } t = \frac{2 \pi}{3}\] ?
If \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?
If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?
If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?
Differential coefficient of sec(tan−1 x) is ______.
For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text { at } \left( 1/4, 1/4 \right)\text { is }\] _____________ .
Let \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .
Find the second order derivatives of the following function x3 + tan x ?
If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?
If y = cosec−1 x, x >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?
\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 =
If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`
\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]
\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]