Advertisements
Advertisements
Question
\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]
\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]
Solution
\[y = \left( x + \sqrt{1 + x^2} \right)^n \]
Differentiating both sides w.r.t. x, we get
\[\frac{dy}{dx} = n \left( x + \sqrt{1 + x^2} \right)^{n - 1} \times \frac{d}{dx}\left( x + \sqrt{1 + x^2} \right)\]
\[\Rightarrow \frac{dy}{dx} = n \left( x + \sqrt{1 + x^2} \right)^{n - 1} \times \left( 1 + \frac{2x}{2\sqrt{1 + x^2}} \right)\]
\[ \Rightarrow \frac{dy}{dx} = n \left( x + \sqrt{1 + x^2} \right)^{n - 1} \times \left( \frac{x + \sqrt{1 + x^2}}{\sqrt{1 + x^2}} \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{n \left( x + \sqrt{1 + x^2} \right)^n}{\sqrt{1 + x^2}}\]
\[\Rightarrow \frac{dy}{dx} = \frac{ny}{\sqrt{1 + x^2}}\]
\[ \Rightarrow \sqrt{1 + x^2}\frac{dy}{dx} = ny\]
Squaring both sides, we get
\[\left( 1 + x^2 \right) \left( \frac{dy}{dx} \right)^2 = n^2 y^2\]
Again differentiating both sides w.r.t. x, we get
\[\left( 1 + x^2 \right) \times \left( 2\frac{dy}{dx} \times \frac{d^2 y}{d x^2} \right) + \left( \frac{dy}{dx} \right)^2 \times 2x = 2 n^2 y\frac{dy}{dx}\]
\[ \Rightarrow 2\frac{dy}{dx}\left[ \left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} \right] = 2 n^2 y\frac{dy}{dx}\]
\[ \Rightarrow \left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles e3x.
Differentiate sin (3x + 5) ?
Differentiate `2^(x^3)` ?
Differentiate \[3^{x^2 + 2x}\] ?
Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?
Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?
Differentiate \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?
If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?
Differentiate (log x)x with respect to log x ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?
Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.
If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?
\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .
Find the second order derivatives of the following function x3 log x ?
If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?
If y = sin (log x), prove that \[x^2 \frac{d^2 y}{d x^2} + x\frac{dy}{dx} + y = 0\] ?
If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?
\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.