English

Find D Y D X in the Following Case E X − Y = Log ( X Y ) ? - Mathematics

Advertisements
Advertisements

Question

Find  \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?

 

Sum

Solution

\[\text{ We have, } e^{x - y} = \log\left( \frac{x}{y} \right)\]
Differentiate with respect to x,
\[\frac{d}{dx}\left( e^{x - y} \right) = \frac{d}{dx}\left\{ \log\left( \frac{x}{y} \right) \right\}\]
\[ \Rightarrow e^\left( x - y \right) \frac{d}{dx}\left( x - y \right) = \frac{1}{\left( \frac{x}{y} \right)} \times \frac{d}{dx}\left( \frac{x}{y} \right) \]
\[ \Rightarrow e^\left( x - y \right) \left( 1 - \frac{d y}{d x} \right) = \frac{y}{x}\left[ \frac{y\frac{d}{dx}\left( x \right) - x\frac{d y}{d x}}{y^2} \right] \]
\[ \Rightarrow e^\left( x - y \right) - e^\left( x - y \right) \frac{d y}{d x} = \frac{1}{xy}\left[ y\left( 1 \right) - x\frac{d y}{d x} \right]\]
\[ \Rightarrow e^\left( x - y \right) - e^\left( x - y \right) \frac{d y}{d x} = \frac{1}{x} - \frac{1}{y}\frac{d y}{d x}\]
\[ \Rightarrow \frac{1}{y}\frac{d y}{d x} - e^\left( x - y \right) \frac{d y}{d x} = \frac{1}{x} - e^\left( x - y \right) \]
\[ \Rightarrow \frac{d y}{d x}\left[ \frac{1}{y} - \frac{e^\left( x - y \right)}{1} \right] = \frac{1}{x} - \frac{e^\left( x - y \right)}{1}\]
\[ \Rightarrow \frac{d y}{d x}\left[ \frac{1 - y e^\left( x - y \right)}{y} \right] = \frac{1 - x e^\left( x - y \right)}{x}\]
\[ \Rightarrow \frac{d y}{d x} = \frac{y}{x}\left[ \frac{1 - x e^\left( x - y \right)}{1 - y e^\left( x - y \right)} \right]\]
\[ \Rightarrow \frac{d y}{d x} = \frac{- y}{- x}\left[ \frac{x e^\left( x - y \right) - 1}{y e^\left( x - y \right) - 1} \right]\]
\[ \Rightarrow \frac{d y}{d x} = \frac{y}{x}\left[ \frac{x e^\left( x - y \right) - 1}{y e^\left( x - y \right) - 1} \right]\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.04 [Page 74]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.04 | Q 10 | Page 74

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate the following functions from first principles log cos x ?


Differentiate \[3^{e^x}\] ?


Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?


Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?


If \[y = e^x + e^{- x}\] prove that  \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?


Differentiate  \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\]  ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?


Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?


Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.


Find  \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?


If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\]  ?


If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?


If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find}  \frac{dy}{dx}\] ?


Differentiate \[\left( 1 + \cos x \right)^x\] ?


Differentiate \[\left( \log x \right)^{\cos x}\] ?


If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?


Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?


If  \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?


\[\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}, \text { find }  \frac{dy}{dx}\] ?

Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.


The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .


If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .


If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .


Let  \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .


If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .


If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .


If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?


If x = a(1 − cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{1}{a}\text { at } \theta = \frac{\pi}{2}\] ?


If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?


If y = 3 e2x + 2 e3x, prove that  \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?


If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?


If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?


If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to


If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is 

 


The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:

Year Jan-March April-June July-Sept. Oct.-Dec.
2010 70 60 45 72
2011 79 56 46 84
2012 90 64 45 82

Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.


f(x) = 3x2 + 6x + 8, x ∈ R


Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×