Advertisements
Advertisements
Question
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
Solution
\[ \Rightarrow e^\left( x - y \right) \frac{d}{dx}\left( x - y \right) = \frac{1}{\left( \frac{x}{y} \right)} \times \frac{d}{dx}\left( \frac{x}{y} \right) \]
\[ \Rightarrow e^\left( x - y \right) \left( 1 - \frac{d y}{d x} \right) = \frac{y}{x}\left[ \frac{y\frac{d}{dx}\left( x \right) - x\frac{d y}{d x}}{y^2} \right] \]
\[ \Rightarrow e^\left( x - y \right) - e^\left( x - y \right) \frac{d y}{d x} = \frac{1}{xy}\left[ y\left( 1 \right) - x\frac{d y}{d x} \right]\]
\[ \Rightarrow e^\left( x - y \right) - e^\left( x - y \right) \frac{d y}{d x} = \frac{1}{x} - \frac{1}{y}\frac{d y}{d x}\]
\[ \Rightarrow \frac{1}{y}\frac{d y}{d x} - e^\left( x - y \right) \frac{d y}{d x} = \frac{1}{x} - e^\left( x - y \right) \]
\[ \Rightarrow \frac{d y}{d x}\left[ \frac{1}{y} - \frac{e^\left( x - y \right)}{1} \right] = \frac{1}{x} - \frac{e^\left( x - y \right)}{1}\]
\[ \Rightarrow \frac{d y}{d x}\left[ \frac{1 - y e^\left( x - y \right)}{y} \right] = \frac{1 - x e^\left( x - y \right)}{x}\]
\[ \Rightarrow \frac{d y}{d x} = \frac{y}{x}\left[ \frac{1 - x e^\left( x - y \right)}{1 - y e^\left( x - y \right)} \right]\]
\[ \Rightarrow \frac{d y}{d x} = \frac{- y}{- x}\left[ \frac{x e^\left( x - y \right) - 1}{y e^\left( x - y \right) - 1} \right]\]
\[ \Rightarrow \frac{d y}{d x} = \frac{y}{x}\left[ \frac{x e^\left( x - y \right) - 1}{y e^\left( x - y \right) - 1} \right]\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles log cos x ?
Differentiate \[3^{e^x}\] ?
Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?
Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?
If \[y = e^x + e^{- x}\] prove that \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.
Find \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?
If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\] ?
If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find} \frac{dy}{dx}\] ?
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Differentiate \[\left( \log x \right)^{\cos x}\] ?
If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?
If \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?
Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.
The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .
If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .
If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .
Let \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .
If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .
If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .
If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?
If x = a(1 − cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{1}{a}\text { at } \theta = \frac{\pi}{2}\] ?
If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?
If y = 3 e2x + 2 e3x, prove that \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?
If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?
If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?
If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to
If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is
The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:
Year | Jan-March | April-June | July-Sept. | Oct.-Dec. |
2010 | 70 | 60 | 45 | 72 |
2011 | 79 | 56 | 46 | 84 |
2012 | 90 | 64 | 45 | 82 |
Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.
f(x) = 3x2 + 6x + 8, x ∈ R
Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.