Advertisements
Advertisements
Question
If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .
Options
\[\left( 1 + \frac{1}{x} \right)^x \left( 1 + \frac{1}{x} \right) - \frac{1}{x + 1}\]
\[\left( 1 + \frac{1}{x} \right)^x \log \left( 1 + \frac{1}{x} \right)\]
\[\left( x + \frac{1}{x} \right)^x \left\{ \log \left( x + 1 \right) - \frac{x}{x + 1} \right\}\]
\[\left( x + \frac{1}{x} \right)^x \left\{ \log \left( 1 + \frac{1}{x} \right) + \frac{1}{x + 1} \right\}\]
Solution
\[\left( 1 + \frac{1}{x} \right)^x \left( 1 + \frac{1}{x} \right) - \frac{1}{x + 1}\]
\[\text{Let y }= \left( 1 + \frac{1}{x} \right)^x \]
\[\text{ Taking log on both sides}, \]
\[\log y = x \log\left( 1 + \frac{1}{x} \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = x\frac{d}{dx}\log\left( 1 + \frac{1}{x} \right) + \log\left( 1 + \frac{1}{x} \right)\frac{d}{dx}\left( x \right) \]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = x\left( \frac{1}{1 + \frac{1}{x}} \right)\frac{d}{dx}\left( 1 + \frac{1}{x} \right) + \log\left( 1 + \frac{1}{x} \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = x \times \frac{x}{x + 1}\left( - \frac{1}{x^2} \right) + \log\left( 1 + \frac{1}{x} \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \frac{x^2}{x + 1} \times \frac{- 1}{x^2} + \log\left( 1 + \frac{1}{x} \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \frac{- 1}{x + 1} + \log\left( 1 + \frac{1}{x} \right)\]
\[ \Rightarrow \frac{dy}{dx} = y\left[ \frac{- 1}{x + 1} + \log\left( 1 + \frac{1}{x} \right) \right]\]
\[ \Rightarrow \frac{dy}{dx} = \left( 1 + \frac{1}{x} \right)^x \left[ \log\left( 1 + \frac{1}{x} \right) - \frac{1}{x + 1} \right]\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles sin−1 (2x + 3) ?
Differentiate \[e^{\sin^{- 1} 2x}\] ?
Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
If \[y = e^x + e^{- x}\] prove that \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?
If \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\], show that \[\frac{dy}{dx}\] is independent of x. ?
If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?
If \[y = \cos^{- 1} \left\{ \frac{2x - 3 \sqrt{1 - x^2}}{\sqrt{13}} \right\}, \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\] ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
Differentiate \[e^{x \log x}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
If \[xy \log \left( x + y \right) = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ?
If f (x) is an even function, then write whether `f' (x)` is even or odd ?
If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .
If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\] then `f' (x)` is equal to ____________ .
Find the second order derivatives of the following function sin (log x) ?
Find the second order derivatives of the following function log (sin x) ?
If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?
If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?
If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
If x = 2 cos t − cos 2t, y = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]
\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]
If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]
Differentiate sin(log sin x) ?