English

If F ( X ) = ∣ ∣ X 2 − 9 X + 20 ∣ ∣ Then F' (X) is Equal to (A) − 2 X + 9 for All X ∈ R - Mathematics

Advertisements
Advertisements

Question

If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\]  then `f' (x)` is equal to ____________ .

Options

  • \[- 2x + 9\text {  for all } x \in R\]

  • \[2x - 9 \text { if }4 < x < 5\]

  • \[- 2x + 9, \text { if }4 < x < 5\]

  • none of these

MCQ

Solution

\[- 2x + 9 \text{ for }4 < x < 5 \]

 

\[\text { We have,} f\left( x \right) = \left| x^2 - 9x + 20 \right| \]

\[f\left( x \right) = \begin{Bmatrix}x^2 - 9x + 20, - \infty < x \leq 4 \\ - \left( x^2 - 9x + 20 \right), 4 < x < 5 \\ x^2 - 9x + 20, 5 \leq x < \infty\end{Bmatrix}\]

\[ \Rightarrow f\left( x \right) = \begin{Bmatrix}2x - 9, - \infty < x \leq 4 \\ - 2x + 9, 4 < x < 5 \\ 2x - 9, 5 \leq x < \infty\end{Bmatrix}\]

\[ \therefore f'\left( x \right) = - 2x + 9 \text { for } 4 < x < 5 \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.10 [Page 121]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.10 | Q 22 | Page 121

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

 

If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`

 

Differentiate the following functions from first principles e−x.


Differentiate logx 3 ?


Differentiate \[e^{\tan 3 x} \] ?


Differentiate \[e^{ax} \sec x \tan 2x\] ?


If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?


If \[y = \sqrt{a^2 - x^2}\] prove that  \[y\frac{dy}{dx} + x = 0\] ?


Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?


If  \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that  \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?

 


Find  \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?

 


Differentiate \[x^{\sin^{- 1} x}\]  ?


Differentiate  \[\left( x^x \right) \sqrt{x}\] ?


Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?


Find \[\frac{dy}{dx}\]  \[y = x^n + n^x + x^x + n^n\] ?

Find  \[\frac{dy}{dx}\]  \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?

 


Find  \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?


Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?


If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?


\[\text{If y} = 1 + \frac{\alpha}{\left( \frac{1}{x} - \alpha \right)} + \frac{{\beta}/{x}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)} + \frac{{\gamma}/{x^2}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)\left( \frac{1}{x} - \gamma \right)}, \text{ find } \frac{dy}{dx}\] is:

If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?


Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?


If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?


If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?


If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\]  ?


If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?


If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .


The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .


If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .


If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?


\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]

\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?


If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is 

 


If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\] 

 


If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to

 


If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is 

 


If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]

 


If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×