Advertisements
Advertisements
Question
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
Options
0
1
1/e
1/2e
Solution
1/2 e
\[\text{ We have,} f\left( x \right) = \log_{x^2} \left( \log x \right)\]
\[ \Rightarrow f\left( x \right) = \frac{\log\left( \log x \right)}{\log x^2} \]
\[ \Rightarrow f\left( x \right) = \frac{\log\left( \log x \right)}{2 \log x}\]
\[ \Rightarrow f'\left( x \right) = \frac{1}{2} \times \frac{d}{dx}\left\{ \frac{\log\left( \log x \right)}{\log x} \right\}\]
\[ \Rightarrow f'\left( x \right) = \frac{1}{2} \times \left\{ \frac{\frac{1}{\log x} \times \frac{1}{x} \times \log x - \frac{\log\left( \log x \right)}{x}}{\left( \log x \right)^2} \right\}\]
\[ \Rightarrow f'\left( x \right) = \frac{1}{2} \times \left\{ \frac{\frac{1}{x} - \frac{\log\left( \log x \right)}{x}}{\left( \log x \right)^2} \right\}\]
\[ \Rightarrow f'\left( e \right) = \frac{1}{2} \times \left\{ \frac{\frac{1}{e} - \frac{\log\left( \log e \right)}{e}}{\left( \log e \right)^2} \right\} \left[ \text{ Putting x } = e \right]\]
\[ \Rightarrow f'\left( e \right) = \frac{1}{2} \times \left\{ \frac{\frac{1}{e}}{1} \right\}\]
\[ \Rightarrow f'\left( e \right) = \frac{1}{2e}\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles e3x.
Differentiate the following functions from first principles eax+b.
Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .
Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?
If \[y = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x > 0\] ,prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2} \] ?
If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\] ?
If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?
If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find} \frac{dy}{dx}\] ?
If \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find} \frac{dy}{dx}\] ?
Differentiate \[e^{x \log x}\] ?
Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?
Find \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?
If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?
If \[y = \sin \left( x^x \right)\] prove that \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?
\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?
Differentiate (log x)x with respect to log x ?
Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?
If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
Differential coefficient of sec(tan−1 x) is ______.
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .
If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .
Find the second order derivatives of the following function ex sin 5x ?
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
If x = 2at, y = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?
If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to
If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`