English

If F (X) = Logx2 (Log X), the F' (X) at X = E is (A) 0 (B) 1 (C) 1/E (D) 1/2 E - Mathematics

Advertisements
Advertisements

Question

If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .

Options

  • 0

  • 1

  • 1/e

  • 1/2e

MCQ

Solution

1/2 e

\[\text{ We have,} f\left( x \right) = \log_{x^2} \left( \log x \right)\]
\[ \Rightarrow f\left( x \right) = \frac{\log\left( \log x \right)}{\log x^2} \]
\[ \Rightarrow f\left( x \right) = \frac{\log\left( \log x \right)}{2 \log x}\]
\[ \Rightarrow f'\left( x \right) = \frac{1}{2} \times \frac{d}{dx}\left\{ \frac{\log\left( \log x \right)}{\log x} \right\}\]
\[ \Rightarrow f'\left( x \right) = \frac{1}{2} \times \left\{ \frac{\frac{1}{\log x} \times \frac{1}{x} \times \log x - \frac{\log\left( \log x \right)}{x}}{\left( \log x \right)^2} \right\}\]
\[ \Rightarrow f'\left( x \right) = \frac{1}{2} \times \left\{ \frac{\frac{1}{x} - \frac{\log\left( \log x \right)}{x}}{\left( \log x \right)^2} \right\}\]
\[ \Rightarrow f'\left( e \right) = \frac{1}{2} \times \left\{ \frac{\frac{1}{e} - \frac{\log\left( \log e \right)}{e}}{\left( \log e \right)^2} \right\} \left[ \text{ Putting x } = e \right]\]
\[ \Rightarrow f'\left( e \right) = \frac{1}{2} \times \left\{ \frac{\frac{1}{e}}{1} \right\}\]
\[ \Rightarrow f'\left( e \right) = \frac{1}{2e}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.10 [Page 119]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.10 | Q 1 | Page 119

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate the following functions from first principles e3x.


Differentiate the following functions from first principles eax+b.


​Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .


Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?


Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?


Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?


If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?

 


Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?


Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\]  ?


Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?


If \[y = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x > 0\] ,prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2} \] ? 


If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?


Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\]  ?


If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?


If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?


If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find}  \frac{dy}{dx}\] ?


If  \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find}  \frac{dy}{dx}\] ?


Differentiate \[e^{x \log x}\] ?


Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?


Find  \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?

 


If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?


If \[y = \sin \left( x^x \right)\] prove that  \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?


\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?


Differentiate (log x)x with respect to log x ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2 \sqrt{2}}, \frac{1}{\sqrt{2 \sqrt{2}}} \right)\] ?

Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?


If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?


If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ? 


Differential coefficient of sec(tan−1 x) is ______.


If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .


\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .


If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .


Find the second order derivatives of the following function ex sin 5x  ?


If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?


If x = 2aty = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?


If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]

 


Let f(x) be a polynomial. Then, the second order derivative of f(ex) is



If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to

 


If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×