English

Differentiate the Following Function from First Principles E √ Cot X - Mathematics

Advertisements
Advertisements

Question

​Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .

Sum

Solution

\[\text{Let} f\left( x \right) = e^\sqrt{\cot x} \]

\[ \Rightarrow f\left( x + h \right) = e^\sqrt{\cot\left( x + h \right)} \]

\[ \therefore \frac{d}{dx}\left\{ f\left( x \right) \right\} = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]

\[ = \lim_{h \to 0} \frac{e^\sqrt{\cot\left( x + h \right)} - e^\sqrt{\cot x}}{h}\]

\[ = \lim_{h \to 0} \frac{e^\sqrt{\cot x} \left( e^{\sqrt{\cot\left( x + h \right)} - \sqrt{\cot x}} - 1 \right)}{h}\]

\[ = e^\sqrt{\cot x} \lim_{h \to 0} \left(\frac{e^{\sqrt{\cot\left( x + h \right)} - \sqrt{\cot x}} - 1}{\sqrt{\cot\left( x + h \right)} - \sqrt{\cot x}} \right) \times \left( \frac{\sqrt{\cot\left( x + h \right)} - \sqrt{\cot x}}{h} \right)\]
\[ = e^\sqrt{\cot x} \lim_{h \to 0} \frac{\left( \sqrt{\cot\left( x + h \right)} - \sqrt{\cot x} \right)}{h} \times \frac{\sqrt{\cot\left( x + h \right)} + \sqrt{\cot x}}{\sqrt{\cot\left( x + h \right)} + \sqrt{\cot x}} \left[ \because \lim_{x \to 0} \frac{e^x - 1}{x} = 1 \text{ and rationalizing the numerator } \right]\]
\[ = e^\sqrt{\cot x} \lim_{h \to 0} \frac{\cot\left( x + h \right) - \cot x}{h\left( \sqrt{\cot\left( x + h \right)} + \sqrt{\cot x} \right)}\]
\[ = e^\sqrt{\cot x} \lim_{h \to 0} \frac{\frac{\cot\left( x + h \right)\cot x + 1}{\cot\left( x - x - h \right)}}{h\left( \sqrt{\cot\left( x + h \right)} + \sqrt{\cot x} \right)} \left[ \because \cot\left( A - B \right) = \frac{\cot A\cot B + 1}{\cot B - \cot A} \right]\]
\[ = e^\sqrt{\cot x} \lim_{h \to 0} \frac{\cot\left( x + h \right)\cot x + 1}{\cot\left( - h \right) \times h\left( \sqrt{\cot\left( x + h \right)} + \sqrt{\cot x} \right)}\]
\[ = - e^\sqrt{\cot x} \lim_{h \to 0} \frac{\cot\left( x + h \right)\cot x + 1}{\left( \frac{h}{\tanh} \right)\left( \sqrt{\cot\left( x + h \right)} + \sqrt{\cot x} \right)}\]
\[ = \frac{e^\sqrt{\cot x} \times \left( \cot^2 x + 1 \right)}{2\sqrt{\cot x}} \left[ \because \lim_{x \to 0} \frac{\tan x}{x} = 1 \right]\]
\[ = - \frac{e^\sqrt{\cot x} \times {cosec}^2 x}{2\sqrt{\cot x}} \left[ \because \left( 1 + \cot^2 x \right) = {cosec}^2 x \right]\]
\[ \therefore \frac{d}{dx}\left( e^\sqrt{cot x} \right) = - \frac{e^\sqrt{\cot x} \times {cosec}^2 x}{2\sqrt{\cot x}}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.01 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.01 | Q 7 | Page 17

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate the following functions from first principles e3x.


Differentiate the following functions from first principles log cos x ?


Differentiate \[3^{x^2 + 2x}\] ?


Differentiate (log sin x)?


Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?


Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?


Differentiate  \[e^x \log \sin 2x\] ?


Differentiate \[\log \left( \cos x^2 \right)\] ?


Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?


If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?


Prove that \[\frac{d}{dx} \left\{ \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right\} = \sqrt{a^2 - x^2}\] ?


Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\]  ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?


Differentiate \[x^{\cos^{- 1} x}\] ?


Differentiate \[x^{\tan^{- 1} x }\]  ?


Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?


Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?


Find  \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?


Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?


If \[y = \sin \left( x^x \right)\] prove that  \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?


If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?


If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?


If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?


Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?


\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?


\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ? 


If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .


If  \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .


Find the second order derivatives of the following function x3 log ?


If x = sin ty = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to

 


If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is 

 


If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to


If y = etan x, then (cos2 x)y2 =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×