Advertisements
Advertisements
Question
Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?
Solution
\[\text{ Let, y } = \sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}\]
\[ \Rightarrow y = \sin^{- 1} \left\{ \sin x\left( \frac{1}{\sqrt{2}} \right) + \cos \left( \frac{1}{\sqrt{2}} \right) \right\}\]
\[ \Rightarrow y = \sin^{- 1} \left\{ \sin x \cos\frac{\pi}{4} + \cos x \sin\frac{\pi}{4} \right\}\]
\[ \Rightarrow y = \sin^{- 1} \left\{ \sin\left( x + \frac{\pi}{4} \right) \right\} . . . \left( i \right)\]
\[\text{ Here, } \frac{- 3\pi}{4} < x < \frac{\pi}{4}\]
\[ \Rightarrow \frac{- 3\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}\]
\[ \Rightarrow \frac{- \pi}{2} < x + \frac{\pi}{4} < \frac{\pi}{2}\]
\[\text{ From } \left( i \right) \text{ we get }, \]
\[ \Rightarrow y = x + \frac{\pi}{4} \left[ Since, \sin^{- 1} \left( \sin\theta \right) = \theta, \text{ if }\theta \in \left[ \frac{- \pi}{2}, \frac{\pi}{2} \right] \right]\]
\[\text{ Differentiating it with respect to x }, \]
\[\frac{d y}{d x} = 1 + 0\]
\[ \therefore \frac{d y}{d x} = 1\]
APPEARS IN
RELATED QUESTIONS
Prove that `y=(4sintheta)/(2+costheta)-theta `
Differentiate the following functions from first principles log cosec x ?
Differentiate log7 (2x − 3) ?
Differentiate \[e^\sqrt{\cot x}\] ?
Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?
Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?
Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?
If \[y = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] .prove that \[\frac{dy}{dx} = 1 - y^2\] ?
If \[y = \sqrt{a^2 - x^2}\] prove that \[y\frac{dy}{dx} + x = 0\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\] ?
Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?
If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?
If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?
Find \[\frac{dy}{dx}\] in the following case \[x^{2/3} + y^{2/3} = a^{2/3}\] ?
If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?
If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?
Differentiate \[{10}^\left( {10}^x \right)\] ?
Differentiate \[\sin \left( x^x \right)\] ?
Find \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
If \[y = \sin \left( x^x \right)\] prove that \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?
Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?
Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?
Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text { if }0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with respect to \[\sec^{- 1} x\] ?
If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\] then the derivative of f (x) in the interval [0, 7] is ____________ .
If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .
Find the second order derivatives of the following function x3 + tan x ?
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =
If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`
Differentiate the following with respect to x:
\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]
Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.