English

Differentiate Tan − 1 ( √ 1 + X 2 − 1 X ) with Respect to Sin − 1 ( 2 X 1 + X 2 ) , If − 1 < X < 1 , X ≠ 0 . ? - Mathematics

Advertisements
Advertisements

Question

Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?

Sum

Solution

\[\text { Let, u }= \tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\]

\[\text { put x }= \tan\theta\]

\[ \Rightarrow u = \tan^{- 1} \left( \frac{\sqrt{1 + \tan^2 \theta} - 1}{\tan\theta} \right)\]

\[ \Rightarrow u = \tan^{- 1} \left( \frac{sec\theta - 1}{\tan\theta} \right) \]

\[ \Rightarrow u = \tan^{- 1} \left( \frac{1 - \cos\theta}{\sin\theta} \right) \]

\[ \Rightarrow u = \tan^{- 1} \left( \frac{2 \sin^2 \frac{\theta}{2}}{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}} \right) \]

\[ \Rightarrow u = \tan^{- 1} \left( \tan\frac{\theta}{2} \right) . . . \left( i \right)\]

\[\text { And,} \]

\[ v = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\]

\[ \Rightarrow v = \sin^{- 1} \left( \frac{2\tan\theta}{1 + \tan^2 \theta} \right) \]

\[ \Rightarrow v = \sin^{- 1} \left( \sin2\theta \right) . . . \left( ii \right)\]

\[\text { Here }, \]

\[ - 1 < x < 1\]

\[ \Rightarrow - 1 < \tan\theta < 1 \]

\[ \Rightarrow - \frac{\pi}{4} < \theta < \frac{\pi}{4} . . . \left( A \right) \]

\[\text { So, from equation } \left( i \right), \]

\[u = \frac{\theta}{2} .........\left[ \text { Since }, \tan^{- 1} \left( \tan\theta \right) = \theta, \text{ if }\theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right] \]

\[ \Rightarrow u = \frac{1}{2} \tan^{- 1} x ..........\left[ \text { since, } x = \tan\theta \right]\]

Differentiating it with respect to x,

\[\frac{du}{dx} = \frac{1}{2}\left( \frac{1}{1 + x^2} \right)\]

\[ \Rightarrow \frac{du}{dx} = \frac{1}{2\left( 1 + x^2 \right)} . . . \left( i \right)\]

\[\text { Now, from equation } \left( ii \right) \text { and } \left( A \right), \]

\[v = 2\theta .........\left[ \text { Since }, \sin^{- 1} \left( \sin\theta \right) = \theta, \text{ if }\theta \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]

\[ \Rightarrow v = 2 \tan^{- 1} x .........\left[ \text { Since, } x = \tan\theta \right]\]

Differentiating it with respect to x,

\[\frac{dv}{dx} = 2\left( \frac{1}{1 + x^2} \right) . . . \left( iv \right)\]

\[\text { dividing equation } \left( iii \right) \text { by } \left( iv \right), \]

\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{1}{2\left( 1 + x^2 \right)} \times \frac{1 + x^2}{2}\]

\[ \therefore \frac{du}{dv} = \frac{1}{4}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.08 [Page 112]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.08 | Q 6 | Page 112

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate the following functions from first principles log cos x ?


Differentiate sin (3x + 5) ?


Differentiate \[3^{x \log x}\] ?


Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?


Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?


Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?


If \[y = e^x + e^{- x}\] prove that  \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?


Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?


Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?


Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?


If  \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?

 


Find  \[\frac{dy}{dx}\] in the following case  \[x^{2/3} + y^{2/3} = a^{2/3}\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?

 


If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?


If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?


Differentiate \[x^{\sin^{- 1} x}\]  ?


Differentiate  \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\]  ?


If \[y = \sin \left( x^x \right)\] prove that  \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?


If  \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?

 


If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?


If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?


Differentiate log (1 + x2) with respect to tan−1 x ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ? 


The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .


If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .


If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .


If y = 3 e2x + 2 e3x, prove that  \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?


\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text {  and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?


If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?


If y = a + bx2, a, b arbitrary constants, then

 


If y = (sin−1 x)2, then (1 − x2)y2 is equal to

 


If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =

 


If `x=a (cos t +t sint )and y= a(sint-cos t )`  Prove that `Sec^3 t/(at),0<t< pi/2` 


If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×