English

Differentiate Sin − 1 ( 4 X √ 1 − 4 X 2 ) with Respect to √ 1 − 4 X 2 , If X ∈ ( − 1 2 , − 1 2 √ 2 ) ? - Mathematics

Advertisements
Advertisements

Question

Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?

Sum

Solution

\[\text {  Let, u } = \sin^{- 1} \left( 4x\sqrt{1 - 4 x^2} \right)\]
\[ \text { put,} 2x = \cos\theta\]
\[ \Rightarrow u = \sin^{- 1} \left( 2 \times \cos\theta\sqrt{1 - \cos^2 \theta} \right)\]
\[ \Rightarrow u = \sin^{- 1} \left( 2\cos\theta \sin\theta \right) \]
\[ \Rightarrow u = \sin^{- 1} \left( \sin 2\theta \right) . . . \left( i \right)\]
\[ \text {Let, v } = \sqrt{1 - 4 x^2} . . . \left( ii \right)\]
\[\text { Here }, \]
\[ x \in \left( - \frac{1}{2}, - \frac{1}{2\sqrt{2}} \right)\]
\[ \Rightarrow 2x \in \left( - 1, - \frac{1}{\sqrt{2}} \right)\]
\[ \Rightarrow \theta \in \left( \frac{3\pi}{4}, \pi \right)\]
\[\text { So, from equation } \left( i \right), \]
\[ u = \pi - 2\theta ......\left[ \text { Since }, \sin^{- 1} \left( \sin\theta \right) = \pi - \theta , \text{ if }\theta \in \left( \frac{\pi}{2}, \frac{3\pi}{2} \right) \right]\]
\[ \Rightarrow u = \pi - 2 \cos^{- 1} \left( 2x \right) ........\left[ \text { Since }, 2x = \cos\theta \right]\]

Differentiate it with respect to x,

\[\frac{du}{dx} = 0 - 2\left( \frac{- 1}{\sqrt{1 - \left( 2x \right)^2}} \right)\frac{d}{dx}\left( 2x \right)\]
\[ \Rightarrow \frac{du}{dx} = \frac{2}{\sqrt{1 - 4 x^2}}\left( 2 \right)\]
\[ \Rightarrow \frac{du}{dx} = \frac{4}{\sqrt{1 - 4 x^2}} . . . \left( iii \right)\]
\[\text { from equation } \left( ii \right), \]
\[\frac{dv}{dx} = \frac{- 4x}{\sqrt{1 - 4 x^2}}\]
\[\text { but }, x \in \left( - \frac{1}{2}, - \frac{1}{2\sqrt{2}} \right)\]
\[ \therefore \frac{dv}{dx} = \frac{- 4\left( - x \right)}{\sqrt{1 - 4 \left( - x \right)^2}}\]
\[ \Rightarrow \frac{dv}{dx} = \frac{4x}{\sqrt{1 - 4 x^2}} . . . \left( iv \right)\]
\[\text { Dividing equation } \left( iii \right) by \left( iv \right)\]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{4}{\sqrt{1 - 4 x^2}} \times \frac{\sqrt{1 - 4 x^2}}{4x}\]
\[ \therefore \frac{du}{dv} = \frac{1}{x}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.08 [Page 112]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.08 | Q 5.3 | Page 112

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate the following functions from first principles log cos x ?


Differentiate \[3^{e^x}\] ?


Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?


Differentiate \[e^{3 x} \cos 2x\] ?


Differentiate \[\tan^{- 1} \left( e^x \right)\] ?


Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?


Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?


Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?


If  \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?


If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?


Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?


If  \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\],  show that \[\frac{dy}{dx}\] is independent of x. ? 

 


Find  \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?


Find  \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?

 


If  \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?

 


Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?


\[\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}, \text { find }  \frac{dy}{dx}\] ?

Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?


If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?


If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?


If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .


If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\]  then `f' (x)` is equal to ____________ .


Find the second order derivatives of the following function  log (sin x) ?


Find the second order derivatives of the following function e6x cos 3x  ?


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?


If x = sin ty = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?


If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?


\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?


\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?


If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\]  then find the value of λ ?


If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\] 

 


If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 = 

 


Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×