Advertisements
Advertisements
Question
Find \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?
Solution
We have,
\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]
Differentiating with respect to x, we get,
\[\frac{d}{dx}\left( \frac{x^2}{a^2} + \frac{y^2}{b^2} \right) = \frac{d}{dx}\left( 1 \right)\]
\[ \Rightarrow \frac{d}{dx}\left( \frac{x^2}{a^2} \right) + \frac{d}{dx}\left( \frac{y^2}{b^2} \right) = 0\]
\[ \Rightarrow \frac{1}{a^2}\left( 2x \right) + \frac{1}{b^2}\left( 2y \right)\frac{d y}{d x} = 0\]
\[ \Rightarrow \frac{2y}{b^2}\frac{d y}{d x} = - \frac{2x}{a^2}\]
\[ \Rightarrow \frac{d y}{d x} = - \left( \frac{2x}{a^2} \right)\left( \frac{b^2}{2y} \right)\]
\[ \Rightarrow \frac{d y}{d x} = - \frac{b^2 x}{a^2 y}\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles e3x.
Differentiate the following functions from first principles log cosec x ?
Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?
Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.
Find \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Differentiate \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\] ?
Find \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?
Find \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?
If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
If \[e^x + e^y = e^{x + y}\] , prove that
\[\frac{dy}{dx} + e^{y - x} = 0\] ?
If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]
Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with respect to \[\sec^{- 1} x\] ?
If \[f'\left( x \right) = \sqrt{2 x^2 - 1} \text { and y } = f \left( x^2 \right)\] then find \[\frac{dy}{dx} \text { at } x = 1\] ?
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\] then `f' (x)` is equal to ____________ .
If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .
If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .
If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]
\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?
If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\]
\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]
If y = etan x, then (cos2 x)y2 =
If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`
If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`
\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]
\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]