Advertisements
Advertisements
Question
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
Solution
\[\text{ Let, u }= {\sin^{- 1}} \left( \frac{2x}{1 + x^2} \right)\]
\[\text { Put x } = \tan\theta\]
\[ \Rightarrow u = \sin^{- 1} \left( \frac{2\tan\theta}{1 + \tan^2 \theta} \right)\]
\[ \Rightarrow u = \sin^{- 1} \left( \sin2\theta \right) . . . \left( i \right)\]
\[\text { Let v } = \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right)\]
\[ \Rightarrow v = \cos^{- 1} \left( \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \right)\]
\[ \Rightarrow v = \cos^{- 1} \left( \cos2\theta \right) . . . \left( ii \right)\]
\[\text { Here }, 0 < x < 1\]
\[ \Rightarrow 0 < \tan\theta < 1\]
\[ \Rightarrow 0 < \theta < \frac{\pi}{4}\]
\[\text { So, from equation } \left( i \right), \]
\[u = 2\theta .........\left[ \text { Since }, \sin^{- 1} \left( \sin\theta \right) = \theta , \text { if} \theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right]\]
\[ \Rightarrow u = 2 \tan^{- 1} x .........\left[ \text { Since } , x = \tan\theta \right]\]
Differentiating it with respect to x,
\[\frac{du}{dx} = \frac{2}{1 + x^2} . . . \left( iii \right)\]
\[\text { from equation } \left( ii \right), \]
\[v = 2\theta ........\left[ \text { Since }, \cos^{- 1} \left( \cos\theta \right) = \theta, if \theta \in \left[ 0, \pi \right] \right]\]
\[ \Rightarrow v = 2 \tan^{- 1} x .........\left[ \text { Since}, x = \tan\theta \right]\]
Differentiating it with respect to x,
\[\frac{dv}{dx} = \frac{2}{1 + x^2} . . . \left( iv \right)\]
\[\text { Dividing equation } \left( iii \right) \text {by} \left( iv \right), \]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{2}{1 + x^2} \times \frac{1 + x^2}{2}\]
\[ \therefore \frac{du}{dv} = 1\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles log cos x ?
Differentiate tan (x° + 45°) ?
Differentiate \[3^{e^x}\] ?
Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?
Differentiate \[\tan^{- 1} \left( e^x \right)\] ?
Differentiate \[e^x \log \sin 2x\] ?
Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?
If \[y = \sqrt{a^2 - x^2}\] prove that \[y\frac{dy}{dx} + x = 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?
If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?
If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?
Differentiate \[x^{\sin x}\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?
If \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta = \frac{\pi}{2}\] ?
If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?
Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?
If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?
If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?
Differential coefficient of sec(tan−1 x) is ______.
Given \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .
If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.
If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?
If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?
If x = 2 cos t − cos 2t, y = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?
\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is
If `x=a (cos t +t sint )and y= a(sint-cos t )` Prove that `Sec^3 t/(at),0<t< pi/2`
The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:
Year | Jan-March | April-June | July-Sept. | Oct.-Dec. |
2010 | 70 | 60 | 45 | 72 |
2011 | 79 | 56 | 46 | 84 |
2012 | 90 | 64 | 45 | 82 |
Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.
f(x) = 3x2 + 6x + 8, x ∈ R
Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.