English

If X = a ( θ − Sin θ ) a N D , Y = a ( 1 + Cos θ ) , Find D Y D X a T θ = π 3 ? - Mathematics

Advertisements
Advertisements

Question

If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?

 

Sum

Solution

\[\text { We have, x} = a\left( \theta - \sin\theta \right) \text { and y } = a\left( 1 + \cos\theta \right)\]

\[ \Rightarrow \frac{dx}{d\theta} = \frac{d}{d\theta}\left[ a\left( \theta - \sin\theta \right) \right] \text { and } \frac{dy}{d\theta} = \frac{d}{d\theta}\left[ a\left( 1 + \cos\theta \right) \right]\]

\[ \Rightarrow \frac{dx}{d\theta} = a\left( 1 - \cos\theta \right) \text { and } \frac{dy}{d\theta} = a\left( - \sin\theta \right)\]

\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{- a \sin\theta}{a\left( 1 - \cos\theta \right)}\]

\[\text { Now, } \left[ \frac{dy}{dx} \right]_\theta = \frac{\pi}{3} = - \frac{\sin\frac{\pi}{3}}{1 - \cos\frac{\pi}{3}} = - \frac{\frac{\sqrt{3}}{2}}{1 - \frac{1}{2}} = - \sqrt{3}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.07 [Page 104]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.07 | Q 23 | Page 104

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

 

If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`

 

Differentiate \[e^\sqrt{\cot x}\] ?


Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?


Differentiate \[e^{ax} \sec x \tan 2x\] ?


Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?


If \[y = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] .prove that \[\frac{dy}{dx} = 1 - y^2\] ?


If \[y = e^x + e^{- x}\] prove that  \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?


Differentiate \[\cos^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?


Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?


If  \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?


Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\]  ?


Find  \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?

 


Differentiate \[\left( \sin x \right)^{\cos x}\] ?


Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?


If `y=(sinx)^x + sin^-1 sqrtx  "then find"  dy/dx` 


Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?


If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?


\[\text{ If }\cos y = x\cos\left( a + y \right),\text{  where } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?

\[\text{ If } \left( x - y \right) e^\frac{x}{x - y} = a,\text{  prove that y }\frac{dy}{dx} + x = 2y\] ?

If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?


Find  \[\frac{dy}{dx}\] , when  \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?

 


If  \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?


If f (x) = loge (loge x), then write the value of `f' (e)` ?


Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.


If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?


If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?


If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?


If f (x) is an even function, then write whether `f' (x)` is even or odd ?


\[\frac{d}{dx} \left[ \log \left\{ e^x \left( \frac{x - 2}{x + 2} \right)^{3/4} \right\} \right]\] equals ___________ .

If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .


Find the second order derivatives of the following function x3 log ?


If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?


\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?


If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]

 


If `x=a (cos t +t sint )and y= a(sint-cos t )`  Prove that `Sec^3 t/(at),0<t< pi/2` 


Differentiate `log [x+2+sqrt(x^2+4x+1)]`


The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:

Year Jan-March April-June July-Sept. Oct.-Dec.
2010 70 60 45 72
2011 79 56 46 84
2012 90 64 45 82

Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×