English

If Y = Log √ Tan X , Write D Y D X ? - Mathematics

Advertisements
Advertisements

Question

If y=logtanx, write dydx ?

Solution

 We have, y =logtanx

y=log(tanx)12

y=12logtanx[logab=bloga]

dydx=12×1tanxddx(tanx)

dydx=12×1tanx(sec2x)

dydx=12sinxcosx×cos2x

dydx=12sinxcosx

dydx=1sin2x

dydx=cosec 2x

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.09 [Page 118]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.09 | Q 19 | Page 118

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is cos-1(13)


Differentiate the following functions from first principles e3x.


Differentiate the following functions from first principles sin−1 (2x + 3) ?


Differentiate esinx ?


Differentiate 2x3 ?


Differentiate xsin2x+5x+kk+(tan2x)3 ?


Differentiate log(3x+2)x2log(2x1) ?


Differentiate 3e3xlog(1+x) ?


If xy = 4, prove that x(dydx+y2)=3y ?


Differentiate cos1{xx2+a2} ?


Differentiate tan1(1+a2x21ax),x0 ?


Differentiate sin1(11+x2) ?


Differentiate tan1(a+bxbax) ?


Differentiate sin1(11+x2) with respect to x.


Find  dydx in the following case 4x+3y=log(4x3y) ?

 


If ex+ey=ex+y, prove that dydx=ex(ey1)ey(ex1)ordydx+eyx=0 ?


Differentiate  (sinx)logx ?


If xyyx=1 , prove that dydx=y(y+xlogy)x(ylogx+x) ?


If yx=eyx ,prove that dydx=(1+logy)2logy ?


If  (sinx)y=x+y , prove that dydx=1(x+y)ycotx(x+y)logsinx1 ?

 


If  x=2cosθcos2θ and y=2sinθsin2θ, prove that dydx=tan(3θ2) ?


Differentiate (log x)x with respect to log x ?


If f(1)=2 and y =f(logex), finddydx at x=e ?


If f(0)=f(1)=0,f(1)=2 and y =f(ex)ef(x) write the value of dydx at x =0 ?


If f (x) is an even function, then write whether f(x) is even or odd ?


If y=sin1(1x21+x2), then dydx= _____________ .


If y = 2 sin x + 3 cos x, show that d2ydx2+y=0 ?


If y = tan−1 x, show that (1+x2)d2ydx2+2xdydx=0 ?


If y = cos−1 x, find d2ydx2 in terms of y alone ?


If y = 500 e7x + 600 e−7x, show that d2ydx2=49y ?


If y = sin (log x), prove that x2d2ydx2+xdydx+y=0 ?


If x = f(t) and y = g(t), then write the value of d2ydx2 ?


If y = axn+1 + bx−n, then x2d2ydx2= 

 


If y = a sin mx + b cos mx, then d2ydx2   is equal to

 


If y=ax+bx2+c then (2xy1 + y)y3 = 

 


If x = a (1 + cos θ), y = a(θ + sin θ), prove that d2ydx2=1aatθ=π2


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.