Advertisements
Advertisements
Question
If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]
Solution
Here,
\[x = a\left( 1 + \cos\theta \right) \text{ and } y = a\left( \theta + \sin\theta \right)\]
\[\text{ Differentiating w . r . t .} \theta, \text{ we get }\]
\[\frac{d x}{d \theta} = - a\sin\theta \text{ and } \frac{d y}{d \theta} = a + a \cos\theta\]
\[ \therefore \frac{d y}{d x} = \frac{a + a\cos\theta}{- a\sin\theta} = \frac{1 + \cos\theta}{- \sin\theta}\]
\[\text{ Differentiating w . r . t . x, we get }\]
\[\frac{d^2 y}{d x^2} = \frac{d}{d\theta}\left\{ \frac{d y}{d x} \right\}\frac{d\theta}{dx}\]
\[\frac{d^2 y}{d x^2} = - \left\{ \frac{- \sin^2 \theta - \cos\theta - \cos^2 \theta}{\sin^2 \theta} \right\}\frac{d\theta}{dx}\]
\[ = \frac{1 + \cos\theta}{\sin^2 \theta} \times \frac{- 1}{a \sin\theta}\]
\[ = \frac{- \left( 1 + \cos\theta \right)}{a \sin^3 \theta}\]
\[\text{ At } \theta = \frac{\pi}{2}: \frac{d^2 y}{d x^2} = \frac{- \left( 1 + \cos\frac{\pi}{2} \right)}{a \left( \sin\frac{\pi}{2} \right)^3} = \frac{- 1}{a}\]
APPEARS IN
RELATED QUESTIONS
Differentiate sin2 (2x + 1) ?
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?
Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?
If \[y = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x > 0\] ,prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2} \] ?
If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?
If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?
Differentiate \[\left( \log x \right)^{ \log x }\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?
If `y=(sinx)^x + sin^-1 sqrtx "then find" dy/dx`
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?
Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta = \frac{\pi}{2}\] ?
\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?
Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?
Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?
Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with respect to \[\sec^{- 1} x\] ?
If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .
Find the second order derivatives of the following function x cos x ?
If \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?
If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\] then find the value of λ ?
If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 =
Differentiate the following with respect to x:
\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?