English

If Y = a Cos (Loge X) + B Sin (Loge X), Then X2 Y2 + Xy1 = (A) 0 (B) Y (C) −Y (D) None of These - Mathematics

Advertisements
Advertisements

Question

If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =

Options

  • 0

  • y

  • y

  • none of these

MCQ

Solution

(c) −y

Here,

\[y = a \cos\left( \log_e x \right) + b \sin\left( \log_e x \right)\]

\[ \Rightarrow y_1 = - a\sin\left( \log_e x \right)\frac{1}{x} + b \cos\left( \log_e x \right)\frac{1}{x}\]

\[ \Rightarrow y_2 = \frac{- a\sin\left( \log_e x \right) + b \cos\left( \log_e x \right)}{x}\]

\[ \Rightarrow y_2 = \frac{- a\cos\left( \log_e x \right) - b \sin\left( \log_e x \right) - \left\{ - a\sin\left( \log_e x \right) + b \cos\left( \log_e x \right) \right\}}{x^2}\]

\[ \Rightarrow x^2 y_2 = - \left\{ a\cos\left( \log_e x \right) + b \sin\left( \log_e x \right) \right\} - \left\{ - a\sin\left( \log_e x \right) + b \cos\left( \log_e x \right) \right\} \]

\[ \Rightarrow x^2 y_2 = - y - x y_1 \]

\[ \Rightarrow x^2 y_2 + x y_1 = - y\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Higher Order Derivatives - Exercise 12.3 [Page 23]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 12 Higher Order Derivatives
Exercise 12.3 | Q 12 | Page 23

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate the following functions from first principles log cos x ?


Differentiate etan x ?


Differentiate logx 3 ?


Differentiate \[e^{3 x} \cos 2x\] ?


Differentiate \[\frac{e^x \log x}{x^2}\] ? 


 If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?


If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] ,  prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?


If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?


Prove that \[\frac{d}{dx} \left\{ \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right\} = \sqrt{a^2 - x^2}\] ?


Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?


Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?


If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?


If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?


Find  \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?

 


If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?


If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?


Differentiate \[\left( \log x \right)^x\] ?


Find  \[\frac{dy}{dx}\]  \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?

 


Find \[\frac{dy}{dx}\] \[y =  \left( \tan  x \right)^{\cot   x}  +  \left( \cot  x \right)^{\tan  x}\] ?


Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?


Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta  = \frac{\pi}{2}\] ?


Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?


If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?


Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?


If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?


If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .


If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\]  is equal to ______________ .


If  \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .


If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\]  then find the value of λ ?


If x = 2aty = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?


If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write  \[\frac{d^2 y}{d x^2}\] in terms of y ?


If y = a + bx2, a, b arbitrary constants, then

 


f(x) = 3x2 + 6x + 8, x ∈ R


Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×