Advertisements
Advertisements
Question
Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?
Solution
\[\text{ Let, y } = \sin^{- 1} \left\{ 1 - 2 x^2 \right\}\]
\[\text { put x } = \sin \theta\]
\[ \Rightarrow y = \sin^{- 1} \left\{ 1 - 2 \sin^2 \theta \right\}\]
\[ \Rightarrow y = \sin^{- 1} \left( \cos2\theta \right)\]
\[ \Rightarrow y = \sin^{- 1} \left\{ \sin\left( \frac{\pi}{2} - 2\theta \right) \right\} .......... \left( 1 \right) \]
\[\text{ Here} , 0 < x < 1\]
\[ \Rightarrow 0 < \sin \theta < 1\]
\[ \Rightarrow 0 < \theta < \frac{\pi}{2}\]
\[ \Rightarrow 0 < 2\theta < \pi\]
\[ \Rightarrow 0 > - 2\theta > - \pi\]
\[ \Rightarrow \frac{\pi}{2} > \left( \frac{\pi}{2} - 2\theta \right) > \frac{\pi}{2} - \pi\]
\[ \Rightarrow \frac{\pi}{2} > \left( \frac{\pi}{2} - 2\theta \right) > - \frac{\pi}{2}\]
\[ \Rightarrow - \frac{\pi}{2} < \left( \frac{\pi}{2} - 2\theta \right) < \frac{\pi}{2}\]
\[\text{ So, from equation } \left( 1 \right), \]
\[ y = \frac{\pi}{2} - 2\theta \left[ \text{ Since }, \sin^{- 1} \left( \sin\theta \right) = \theta, \text{ if } \theta \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]
\[ \Rightarrow y = \frac{\pi}{2} - 2 \sin^{- 1} x \left[ \text{ Since}, x = \sin \theta \right]\]
\[\text{Differentiating it with respect to x }, \]
\[ \frac{d y}{d x} = 0 - 2\left( \frac{1}{\sqrt{1 - x^2}} \right)\]
\[ \therefore \frac{d y}{d x} = - \frac{2}{\sqrt{1 - x^2}}\]
APPEARS IN
RELATED QUESTIONS
Differentiate sin (log x) ?
Differentiate sin2 (2x + 1) ?
Differentiate (log sin x)2 ?
Differentiate \[e^\sqrt{\cot x}\] ?
Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?
Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?
Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?
Differentiate \[e^{ax} \sec x \tan 2x\] ?
If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?
If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?
Find \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?
If \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find} \frac{dy}{dx}\] ?
Differentiate \[\left( \log x \right)^{\cos x}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
If `y=(sinx)^x + sin^-1 sqrtx "then find" dy/dx`
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?
If \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?
If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]
If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?
Differentiate (log x)x with respect to log x ?
Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?
If f (x) = loge (loge x), then write the value of `f' (e)` ?
If f (x) is an even function, then write whether `f' (x)` is even or odd ?
If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .
Find the second order derivatives of the following function x3 + tan x ?
If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?
If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?
If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?
\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?
If y = a xn + 1 + bx−n and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\] then write the value of λ ?
If x = 2at, y = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?
If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\]
\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]
If y = etan x, then (cos2 x)y2 =
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?