Advertisements
Advertisements
Question
If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .
Options
\[\frac{\cos^2 \left( a + y \right)}{\cos a}\]
\[\frac{\cos a}{\cos^2 \left( a + y \right)}\]
\[\frac{\sin^2 y}{\cos a}\]
none of these
Solution
\[\frac{\cos^2 \left( a + y \right)}{\cos a}\]
We have,
\[ \Rightarrow \cos y\frac{dy}{dx} = 1 \times \cos\left( a + y \right) - x \sin\left( a + y \right)\frac{d}{dx}\left( a + y \right)\]
\[ \Rightarrow \cos y\frac{dy}{dx} = \cos\left( a + y \right) - x \sin\left( a + y \right)\frac{dy}{dx}\]
\[ \Rightarrow \cos y\frac{dy}{dx} + x \sin\left( a + y \right)\frac{dy}{dx} = \cos\left( a + y \right)\]
\[ \Rightarrow \left[ \cos y + x \sin\left( a + y \right) \right]\frac{dy}{dx} = \cos\left( a + y \right)\]
\[ \Rightarrow \left[ \cos y + \frac{\sin y}{\cos\left( a + y \right)} \times \sin\left( a + y \right) \right]\frac{dy}{dx} = \cos\left( a + y \right) .............\binom{ \because \sin y = x \cos\left( a + y \right)}{ \because x = \frac{\sin y}{\cos\left( a + y \right)}}\]
\[ \Rightarrow \left[ \frac{\cos\left( a + y \right) \cos y + \sin y \sin\left( a + y \right)}{\cos\left( a + y \right)} \right]\frac{dy}{dx} = \cos\left( a + y \right)\]
\[ \Rightarrow \frac{\cos\left( a + y - y \right)}{\cos\left( a + y \right)} \times \frac{dy}{dx} = \cos\left( a + y \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\cos a}\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles ecos x.
Differentiate the following functions from first principles x2ex ?
Differentiate tan (x° + 45°) ?
Differentiate (log sin x)2 ?
Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?
Differentiate \[e^{3 x} \cos 2x\] ?
Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?
Differentiate \[\log \left( \tan^{- 1} x \right)\]?
If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\] ?
If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?
Find \[\frac{dy}{dx}\] in the following case \[x^{2/3} + y^{2/3} = a^{2/3}\] ?
If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?
If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find} \frac{dy}{dx}\] ?
Differentiate \[{10}^{ \log \sin x }\] ?
If `y=(sinx)^x + sin^-1 sqrtx "then find" dy/dx`
If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?
If \[y = \sin \left( x^x \right)\] prove that \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?
Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ?
Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?
If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?
If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\] ?
If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?
If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\] is equal to __________ .
Find the second order derivatives of the following function e6x cos 3x ?
If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If x = sin t, y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If y = ex (sin x + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?
If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 f '' (x) − xf(x) =
If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =
Differentiate `log [x+2+sqrt(x^2+4x+1)]`