English

If Sin Y = X Cos ( a + Y ) , Then D Y D X is Equal to (A) Cos 2 ( a + Y ) Cos a - Mathematics

Advertisements
Advertisements

Question

If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .

Options

  • \[\frac{\cos^2 \left( a + y \right)}{\cos a}\]

  • \[\frac{\cos a}{\cos^2 \left( a + y \right)}\]

  • \[\frac{\sin^2 y}{\cos a}\]

  • none of these

MCQ

Solution

\[\frac{\cos^2 \left( a + y \right)}{\cos a}\]

 

We have,

\[\sin y = x \cos\left( a + y \right)\]
\[\Rightarrow \frac{d}{dx}\left( \sin y \right) = \frac{d}{dx}\left[ x \cos\left( a + y \right) \right]\]
\[ \Rightarrow \cos y\frac{dy}{dx} = 1 \times \cos\left( a + y \right) - x \sin\left( a + y \right)\frac{d}{dx}\left( a + y \right)\]
\[ \Rightarrow \cos y\frac{dy}{dx} = \cos\left( a + y \right) - x \sin\left( a + y \right)\frac{dy}{dx}\]
\[ \Rightarrow \cos y\frac{dy}{dx} + x \sin\left( a + y \right)\frac{dy}{dx} = \cos\left( a + y \right)\]
\[ \Rightarrow \left[ \cos y + x \sin\left( a + y \right) \right]\frac{dy}{dx} = \cos\left( a + y \right)\]
\[ \Rightarrow \left[ \cos y + \frac{\sin y}{\cos\left( a + y \right)} \times \sin\left( a + y \right) \right]\frac{dy}{dx} = \cos\left( a + y \right) .............\binom{ \because \sin y = x \cos\left( a + y \right)}{ \because x = \frac{\sin y}{\cos\left( a + y \right)}}\]
\[ \Rightarrow \left[ \frac{\cos\left( a + y \right) \cos y + \sin y \sin\left( a + y \right)}{\cos\left( a + y \right)} \right]\frac{dy}{dx} = \cos\left( a + y \right)\]
\[ \Rightarrow \frac{\cos\left( a + y - y \right)}{\cos\left( a + y \right)} \times \frac{dy}{dx} = \cos\left( a + y \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\cos a}\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.10 [Page 121]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.10 | Q 30 | Page 121

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate the following functions from first principles ecos x.


Differentiate the following functions from first principles x2ex ?


Differentiate tan (x° + 45°) ?


Differentiate (log sin x)?


Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?


Differentiate \[e^{3 x} \cos 2x\] ?


Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?


Differentiate \[\log \left( \tan^{- 1} x \right)\]? 


If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?

 


If \[y = \sqrt{x^2 + a^2}\] prove that  \[y\frac{dy}{dx} - x = 0\] ?


Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\]  ?


If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that  \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?

 


Find  \[\frac{dy}{dx}\] in the following case  \[x^{2/3} + y^{2/3} = a^{2/3}\] ?

 


If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?


If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find}  \frac{dy}{dx}\] ?


Differentiate \[{10}^{ \log \sin x }\] ?


If `y=(sinx)^x + sin^-1 sqrtx  "then find"  dy/dx` 


If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?


If \[y = \sin \left( x^x \right)\] prove that  \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?


If  \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?

 


If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?


Find \[\frac{dy}{dx}\] , when  \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?


If \[x = \sin^{- 1} \left( \frac{2 t}{1 + t^2} \right) \text{ and y } = \tan^{- 1} \left( \frac{2 t}{1 - t^2} \right), - 1 < t < 1\] porve that \[\frac{dy}{dx} = 1\] ?

 


Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?


Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ? 


Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?


Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?


If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?


If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\]  ?


If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?


If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\]  is equal to __________ .


Find the second order derivatives of the following function e6x cos 3x  ?


If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If x = sin ty = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


If y = ex (sin + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?


If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 '' (x) − xf(x) =

 


If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =

 


Differentiate `log [x+2+sqrt(x^2+4x+1)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×