English

If Y = Sin − 1 ( X 1 + X 2 ) + Cos − 1 ( 1 √ 1 + X 2 ) , 0 < X < ∞ Prove that D Y D X = 2 1 + X 2 ? - Mathematics

Advertisements
Advertisements

Question

If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that  \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?

 

Sum

Solution

\[\text{ Let, y} = \sin^{- 1} \left( \frac{x}{\sqrt{1 + x^2}} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\]

\[\text{ Put x} = \tan\theta\]

\[ \therefore y = \sin^{- 1} \left( \frac{\tan\theta}{\sqrt{1 + \tan^2 \theta}} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + \tan^2 \theta}} \right)\]

\[ \Rightarrow y = \sin^{- 1} \left( \frac{\frac{\sin\theta}{\cos\theta}}{sec\theta} \right) + \cos^{- 1} \left( \frac{1}{sec\theta} \right)\]

\[ \Rightarrow y = \sin^{- 1} \left( \frac{\frac{\sin\theta}{\cos\theta}}{\frac{1}{\cos\theta}} \right) + \cos^{- 1} \left( \cos\theta \right)\]

\[ \Rightarrow y = \sin^{- 1} \left( \sin \theta \right) + \cos^{- 1} \left( \cos \theta \right) . . . \left( i \right)\]

\[\text{ Here,} 0 < x < \infty \]

\[ \Rightarrow 0 < \tan\theta < \infty \]

\[ \Rightarrow 0 < \theta < \frac{\pi}{2}\]

\[\text{ So, from equation} \left( i \right), \]

\[y = \theta + \theta ...........[\text{Since, }\sin^{- 1} \left( \sin\theta \right) = \theta, \text{ if }\theta \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right], \cos^{- 1} \left( \cos\theta \right) = \theta, \text{ if }\theta \in \left[ 0, \pi \right]\]

\[ \Rightarrow y = 2\theta\]

\[ \Rightarrow y = 2 \tan^{- 1} x ...........\left[ \text{Since}, x = \tan\theta \right]\]

Differentiate it with respect to x,

\[\therefore \frac{d y}{d x} = \frac{2}{1 + x^2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.03 [Page 64]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.03 | Q 36 | Page 64

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

​Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .


Differentiate tan (x° + 45°) ?


Differentiate `2^(x^3)` ?


Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?


Differentiate \[\cos \left( \log x \right)^2\] ?


Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?


If \[y = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] .prove that \[\frac{dy}{dx} = 1 - y^2\] ?


Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?


Find  \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?

 


If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?


If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?


If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find}  \frac{dy}{dx}\] ?


Differentiate \[\left( 1 + \cos x \right)^x\] ?


Differentiate \[{10}^\left( {10}^x \right)\] ?


If \[y = x \sin y\] , prove that  \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?

 


If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?


Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?


Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?


If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?

 


Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?


Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?


Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?


If \[u = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ and v} = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] where \[- 1 < x < 1\], then write the value of \[\frac{du}{dv}\] ?


If f (x) is an even function, then write whether `f' (x)` is even or odd ?


The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .


\[\frac{d}{dx} \left[ \log \left\{ e^x \left( \frac{x - 2}{x + 2} \right)^{3/4} \right\} \right]\] equals ___________ .

If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .


Find the second order derivatives of the following function sin (log x) ?


If y = x + tan x, show that  \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?


If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?


If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?


\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]

Disclaimer: There is a misprint in the question,

\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of

\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?


If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?


If y = a + bx2, a, b arbitrary constants, then

 


If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\]   is equal to

 


If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?


Differentiate sin(log sin x) ?


If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×