English

If Y = E X − E − X E X + E − X .Prove that D Y D X = 1 − Y 2 ? - Mathematics

Advertisements
Advertisements

Question

If \[y = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] .prove that \[\frac{dy}{dx} = 1 - y^2\] ?

Solution

\[\text{We have, y }= \frac{e^x - e^{- x}}{e^x + e^{- x}}\]

Differentiating with respect to x, 

\[\frac{d y}{d x} = \frac{d}{dx}\left( \frac{e^x - e^{- x}}{e^x + e^{- x}} \right)\]

\[ = \left[ \frac{\left( e^x + e^{- x} \right)\frac{d}{dx}\left( e^x - e^{- x} \right) - \left( e^x - e^{- x} \right)\frac{d}{dx}\left( e^x + e^{- x} \right)}{\left( e^x + e^{- x} \right)^2} \right] \]

\[ = \left[ \frac{\left( e^x + e^{- x} \right)\left\{ e^x - e^{- x} \frac{d}{dx}\left( - x \right) \right\} - \left( e^x - e^{- x} \right)\left\{ e^x + e^{- x} \frac{d}{dx}\left( - x \right) \right\}}{\left( e^x + e^{- x} \right)^2} \right]\]

\[ = \left[ \frac{\left( e^x + e^{- x} \right)\left( e^x + e^{- x} \right) - \left( e^x - e^{- x} \right)\left( e^x - e^{- x} \right)}{\left( e^x + e^{- x} \right)^2} \right]\]

\[ = \frac{\left( e^x + e^{- x} \right)^2 - \left( e^x - e^{- x} \right)^2}{\left( e^x + e^{- x} \right)^2}\]

\[ = 1 - \frac{\left( e^x - e^{- x} \right)^2}{\left( e^x + e^{- x} \right)^2}\]

\[ = 1 - \left( \frac{e^x - e^{- x}}{e^x + e^{- x}} \right)^2 \]

\[ = 1 - y^2 \]

\[So, \frac{d y}{d x} = 1 - y^2 \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.02 [Page 38]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.02 | Q 65 | Page 38

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

 

If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`

 

Differentiate the following functions from first principles e−x.


Differentiate the following functions from first principles log cosec x ?


Differentiate \[e^\sqrt{\cot x}\] ?


Differentiate \[\frac{e^x \log x}{x^2}\] ? 


Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?


If  \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\]  prove that \[\frac{dy}{dx} = \sec 2x\] ?


Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\]  with respect to x ?


Find  \[\frac{dy}{dx}\] in the following case  \[x^{2/3} + y^{2/3} = a^{2/3}\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?

 


If \[\tan^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = a\] Prove that  \[\frac{dy}{dx} = \frac{x}{y}\frac{\left( 1 - \tan a \right)}{\left( 1 + \tan a \right)}\] ?


Differentiate \[\left( \sin^{- 1} x \right)^x\] ?


Differentiate  \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\]  ?


Find \[\frac{dy}{dx}\]  \[y = x^x + \left( \sin x \right)^x\] ?


Find \[\frac{dy}{dx}\]

\[y = x^x + x^{1/x}\] ?


If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?


If  \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?

 


\[\text{ If } \left( x - y \right) e^\frac{x}{x - y} = a,\text{  prove that y }\frac{dy}{dx} + x = 2y\] ?

If  \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?

 


If  \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?

 


Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?


Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?


Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with  respect to \[\sec^{- 1} x\] ?


Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.


If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?


If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?


If  \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .


If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .


If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .


If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?


\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]

Disclaimer: There is a misprint in the question,

\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of

\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?


If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?


If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?


\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]

 


If y = (sin−1 x)2, then (1 − x2)y2 is equal to

 


If y = etan x, then (cos2 x)y2 =


If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .


Find the minimum value of (ax + by), where xy = c2.


If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×