Advertisements
Advertisements
Question
Find the minimum value of (ax + by), where xy = c2.
Solution
Let z = ax + by .....(1)
Given:
xy = c2 or \[y = \frac{c^2}{x}\]
Putting
\[y = \frac{c^2}{x}\] in (1), we get
z = ax + \[\frac{b c^2}{x}\]
Differentiating both sides w.r.t. x, we get
\[\frac{dz}{dx} = a - \frac{b c^2}{x^2}\]
For maxima or minima,
\[\frac{dz}{dx} = 0\]
⇒ \[a - \frac{b c^2}{x^2} = 0\]
⇒ \[x^2 = \frac{b c^2}{a}\]
⇒ \[x = \pm c\sqrt{\frac{b}{a}}\]
Now,
\[\frac{d^2 z}{d x^2} = \frac{2b c^2}{x^3}\]
At \[x = c\sqrt{\frac{b}{a}}\] , \[\frac{d^2 z}{d x^2} = \frac{2b c^2}{\left( c\sqrt{\frac{b}{a}} \right)^3} > 0\]
\[\therefore x = c\sqrt{\frac{b}{a}}\] is the point of minima.
At \[x = - c\sqrt{\frac{b}{a}}\], \[\frac{d^2 z}{d x^2} = \frac{2b c^2}{\left( - c\sqrt{\frac{b}{a}} \right)^3} < 0\]
\[\therefore x = - c\sqrt{\frac{b}{a}}\] is the point of maxima.
So,
When \[x = c\sqrt{\frac{b}{a}}\], \[y = \frac{c^2}{x} = \frac{c^2}{c\sqrt{\frac{b}{a}}} = c\sqrt{\frac{a}{b}}\]
\[\therefore z_{\text { minimum}} = ac\sqrt{\frac{b}{a}} + bc\sqrt{\frac{a}{b}} = \frac{abc + abc}{\sqrt{ab}} = \frac{2abc}{\sqrt{ab}} = 2c\sqrt{ab}\]
Thus, the minimum value of (ax + by), where xy = c2 is \[2c\sqrt{ab}\].
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles \[e^\sqrt{2x}\].
Differentiate \[3^{x^2 + 2x}\] ?
Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?
Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?
Differentiate \[\frac{e^x \log x}{x^2}\] ?
Differentiate \[\tan^{- 1} \left( e^x \right)\] ?
Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?
Differentiate \[e^x \log \sin 2x\] ?
Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?
Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?
Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?
If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?
Find \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?
Differentiate \[\left( \sin x \right)^{\log x}\] ?
Differentiate \[{10}^{ \log \sin x }\] ?
find \[\frac{dy}{dx}\] \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?
If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?
If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?
If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?
Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?
If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?
Differential coefficient of sec(tan−1 x) is ______.
If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .
If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?
If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?
If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`
If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]
f(x) = 3x2 + 6x + 8, x ∈ R