Commerce (English Medium)
Science (English Medium)
Arts (English Medium)
Academic Year: 2014-2015
Date: March 2015
Advertisements
If \[A = \begin{bmatrix}5 & 6 & - 3 \\ - 4 & 3 & 2 \\ - 4 & - 7 & 3\end{bmatrix}\] , then write the cofactor of the element a21 of its 2nd row.
Chapter: [0.04] Determinants
Write the sum of the order and degree of the differential equation
\[\left( \frac{d^2 y}{{dx}^2} \right)^2 + \left( \frac{dy}{dx} \right)^3 + x^4 = 0 .\]
Chapter: [0.09] Differential Equations
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
Chapter: [0.09] Differential Equations
Find the unit vector in the direction of the sum of the vectors `2hati + 3hatj - hatk and 4hati - 3hatj + 2hatk .`
Chapter: [0.1] Vectors
Find the area of a parallelogram whose adjacent sides are represented by the vectors\[2 \hat{i} - 3 \hat{k} \text { and } 4 \hat{j} + 2 \hat{k} .\]
Chapter: [0.1] Vectors
Find the intercepts cut off by the plane 2x + y – z = 5.
Chapter: [0.11] Three - Dimensional Geometry
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
Chapter: [0.07] Integrals
Three machines E1, E2 and E3 in a certain factory producing electric bulbs, produce 50%, 25% and 25% respectively, of the total daily output of electric bulbs. It is known that 4% of the bulbs produced by each of machines E1 and E2are defective and that 5% of those produced by machine E3 are defective. If one bulb is picked up at random from a day's production, calculate the probability that it is defective.
Chapter: [0.13] Probability
Two numbers are selected at random (without replacement) from positive integers 2, 3, 4, 5, 6 and 7. Let X denote the larger of the two numbers obtained. Find the mean and variance of the probability distribution of X.
Chapter: [0.13] Probability
The two vectors \[\hat{j} + \hat{k}\] and \[3 \hat{i} - \hat{j} + 4 \hat{k}\] represents the sides \[\overrightarrow{AB}\] and \[\overrightarrow{AC}\] respectively of a triangle ABC. Find the length of the median through A.
Chapter: [0.1] Vectors
Find the equation of a plane which passes through the point (3, 2, 0) and contains the line \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\].
Chapter: [0.11] Three - Dimensional Geometry
Advertisements
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
Chapter: [0.02] Inverse Trigonometric Functions
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
Chapter: [0.02] Inverse Trigonometric Functions
If \[A = \begin{bmatrix}2 & - 1 \\ - 1 & 2\end{bmatrix}\] and I is the identity matrix of order 2, then show that A2= 4 A − 3 I. Hence find A−1.
Chapter: [0.03] Matrices
If \[A = \begin{bmatrix}1 & - 1 \\ 2 & - 1\end{bmatrix} \text { and } B = \begin{bmatrix}a & 1 \\ b & - 1\end{bmatrix} \text { and } \left( A + B \right)^2 = A^2 + B^2\] , then find the values of a and b.
Chapter: [0.03] Matrices
Using properties of determinants, prove the following :
Chapter: [0.04] Determinants
Evaluate : `intsin(x-a)/sin(x+a)dx`
Chapter: [0.07] Integrals
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
Chapter: [0.07] Integrals
Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .
Chapter: [0.05] Continuity and Differentiability
In a parliament election, a political party hired a public relations firm to promote its candidates in three ways − telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array} \text{Telephone}\\{\text{House calls }}\\ \text{Letters}\end{array}\]
The number of contacts of each type made in two cities X and Y is given in the matrix B as
\[\begin{array}"Telephone & House calls & Letters\end{array}\]
\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array} \\City X \\ City Y\end{array}\]
Find the total amount spent by the party in the two cities.
What should one consider before casting his/her vote − party's promotional activity of their social activities?
Chapter: [0.03] Matrices
Advertisements
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
Chapter: [0.07] Integrals
The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are
(A)`(4, +- 8/3)`
(B) `(4,(-8)/3)`
(C)`(4, +- 3/8)`
(D) `(+-4, 3/8)`
Chapter: [0.06] Applications of Derivatives
\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]
\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]
Chapter: [0.06] Applications of Derivatives
Find the minimum value of (ax + by), where xy = c2.
Chapter: [0.06] Applications of Derivatives
Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.
Chapter: [0.08] Applications of the Integrals
Maximise z = 8x + 9y subject to the constraints given below :
2x + 3y ≤ 6
3x − 2y ≤6
y ≤ 1
x, y ≥ 0
Chapter: [0.12] Linear Programming
Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured parallel to the line whose direction cosines are proportional to 2, 3, −6.
Chapter: [0.11] Three - Dimensional Geometry [0.11] Three - Dimensional Geometry
Let f : N → ℝ be a function defined as f(x) = 4x2 + 12x + 15. Show that f : N → S, where S is the range of f, is invertible. Also find the inverse of f.
Chapter: [0.01] Relations and Functions
Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.
Chapter: [0.08] Applications of the Integrals
Find the probability distribution of the number of doublets in four throws of a pair of dice. Also find the mean and variance of this distribution.
Chapter: [0.13] Probability
Solve the following differential equation : \[\left[ y - x \cos\left( \frac{y}{x} \right) \right]dy + \left[ y \cos\left( \frac{y}{x} \right) - 2x \sin\left( \frac{y}{x} \right) \right]dx = 0\] .
Chapter: [0.09] Differential Equations
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
Chapter: [0.09] Differential Equations
Other Solutions
Submit Question Paper
Help us maintain new question papers on Shaalaa.com, so we can continue to help studentsonly jpg, png and pdf files
CBSE previous year question papers Class 12 Mathematics with solutions 2014 - 2015
Previous year Question paper for CBSE Class 12 Maths-2015 is solved by experts. Solved question papers gives you the chance to check yourself after your mock test.
By referring the question paper Solutions for Mathematics, you can scale your preparation level and work on your weak areas. It will also help the candidates in developing the time-management skills. Practice makes perfect, and there is no better way to practice than to attempt previous year question paper solutions of CBSE Class 12.
How CBSE Class 12 Question Paper solutions Help Students ?
• Question paper solutions for Mathematics will helps students to prepare for exam.
• Question paper with answer will boost students confidence in exam time and also give you an idea About the important questions and topics to be prepared for the board exam.
• For finding solution of question papers no need to refer so multiple sources like textbook or guides.