English

The Two Vectors ^ J + ^ K and 3 ^ I − ^ J + 4 ^ K Represents the Sides → a B and → a C Respectively of a Triangle Abc. Find the Length of the Median Through A. - Mathematics

Advertisements
Advertisements

Question

The two vectors \[\hat{j} + \hat{k}\] and \[3 \hat{i} - \hat{j} + 4 \hat{k}\] represents the sides \[\overrightarrow{AB}\] and \[\overrightarrow{AC}\] respectively of a triangle ABC. Find the length of the median through A.

Sum

Solution

\[\overrightarrow{AB}\] as \[\hat{j} + \hat{k}\] In ∆ABC, \[\overrightarrow{AB} = \hat{j} + \hat{k}\] and \[\overrightarrow{AC} = 3 \hat{i} - \hat{j} + 4 \hat{k}\] 
Let the position vector of A be (0, 0, 0). Then, the position vectors of B and C are (0, 1, 1) and (3, −1, 4), respectively.

Suppose D be the mid-point of the line segment joining the points B(0, 1, 1) and C(3, −1, 4).
∴ Position vector of D \[= \frac{\left( \hat{j} + \hat{k} \right) + \left( 3 \hat{i} - \hat{j} + 4 \hat{k} \right)}{2} = \frac{3 \hat{i} + 5 \hat{k}}{2} = \frac{3}{2} \hat{i} + \frac{5}{2} \hat{k}\]
Now,
Length of the median, AD = \[\left| \overrightarrow{AD} \right| = \left| \left( \frac{3}{2} \hat{i} + \frac{5}{2} \hat{k} \right) - \left( 0 \hat{i} + 0 \hat{j} + 0 \hat{k} \right) \right| = \left| \frac{3}{2} \hat{i} + \frac{5}{2} \hat{k} \right| = \sqrt{\left( \frac{3}{2} \right)^2 + 0^2 + \left( \frac{5}{2} \right)^2} = \sqrt{\frac{34}{4}} = \sqrt{\frac{17}{2}}\] units

shaalaa.com

Notes

Disclaimer: The question has been solved by taking the vector

  Is there an error in this question or solution?
Chapter 23: Algebra of Vectors - Exercise 23.6 [Page 49]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 23 Algebra of Vectors
Exercise 23.6 | Q 19 | Page 49

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the angle between the vectors `hati-hatj and hatj-hatk`


If `veca and vecb` are perpendicular vectors, `|veca+vecb| = 13 and |veca| = 5` ,find the value of `|vecb|.`


Show that the vectors `2hati - 3hatj + 4hatk` and `-4hati + 6hatj -  8hatk` are collinear.


Evaluate the product `(3veca - 5vecb).(2veca + 7vecb)`.


Find `|vecx|`, if for a unit vector veca , `(vecx -  veca).(vecx + veca) = 12`.


If  `veca.veca = 0` and `veca . vecb = 0,` then what can be concluded about the vector `vecb`?


If either vector `veca = vec0`  or `vecb = vec0`, then `veca.vecb = 0`. But the converse need not be true. Justify your answer with an example.


Show that the vectors `2hati - hatj + hatk, hati - 3hatj - 5hatk`  and `3hati - 4hatj - 4hatk` from the vertices of a right angled triangle.


Show that the points A, B, C with position vectors `2hati- hatj + hatk`, `hati - 3hatj - 5hatk` and `3hati - 4hatj - 4hatk` respectively, are the vertices of a right-angled triangle. Hence find the area of the triangle


If \[\vec{a,} \vec{b}\] are two vectors, then write the truth value of the following statement: 
 \[\vec{a} = - \vec{b} \Rightarrow \left| \vec{a} \right| = \left| \vec{b} \right|\]


If \[\vec{a,} \vec{b}\] are two vectors, then write the truth value of the following statement: 
\[|\vec{a}| =  |\vec{b}| \Rightarrow \vec{a}  = ± \vec{b} \]


If \[\vec{a,} \vec{b}\] are two vectors, then write the truth value of the following statement: 
\[\left| \vec{a} \right| = \left| \vec{b} \right| \Rightarrow \vec{a} = \vec{b}\]


Define unit vector.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×