English

Evaluate the product (3a→-5b→).(2a→+7b→). - Mathematics

Advertisements
Advertisements

Question

Evaluate the product `(3veca - 5vecb).(2veca + 7vecb)`.

Sum

Solution

We have, `(3veca - 5vecb) . (2veca + 7vecb)`

`= (3veca) xx (2veca) + (3veca) xx (7vecb) + (-5vecb) xx (2veca) + (-5vecb) xx (7vecb)`

= `6|veca|^2 + 21(veca xx vecb) - 10(vecb xx veca) - 35|vecb|^2` `[∵ veca xx vecb = vecb xx veca]`

= `6|veca|^2 + 21(veca xx vecb) - 10(veca xx vecb) - 35|vecb|^2`

= `6|veca|^2 + 11(veca xx vecb) - 35|vecb|^2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Vector Algebra - Exercise 10.3 [Page 448]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 10 Vector Algebra
Exercise 10.3 | Q 7 | Page 448

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the angle between the vectors `hati-hatj and hatj-hatk`


If `veca and vecb` are perpendicular vectors, `|veca+vecb| = 13 and |veca| = 5` ,find the value of `|vecb|.`


Show that the vectors `2hati - 3hatj + 4hatk` and `-4hati + 6hatj -  8hatk` are collinear.


Find `|vecx|`, if for a unit vector veca , `(vecx -  veca).(vecx + veca) = 12`.


If  `veca.veca = 0` and `veca . vecb = 0,` then what can be concluded about the vector `vecb`?


If either vector `veca = vec0`  or `vecb = vec0`, then `veca.vecb = 0`. But the converse need not be true. Justify your answer with an example.


Show that the vectors `2hati - hatj + hatk, hati - 3hatj - 5hatk`  and `3hati - 4hatj - 4hatk` from the vertices of a right angled triangle.


Show that the points A, B, C with position vectors `2hati- hatj + hatk`, `hati - 3hatj - 5hatk` and `3hati - 4hatj - 4hatk` respectively, are the vertices of a right-angled triangle. Hence find the area of the triangle


If \[\vec{a,} \vec{b}\] are two vectors, then write the truth value of the following statement: 
 \[\vec{a} = - \vec{b} \Rightarrow \left| \vec{a} \right| = \left| \vec{b} \right|\]


If \[\vec{a,} \vec{b}\] are two vectors, then write the truth value of the following statement: 
\[|\vec{a}| =  |\vec{b}| \Rightarrow \vec{a}  = ± \vec{b} \]


If \[\vec{a,} \vec{b}\] are two vectors, then write the truth value of the following statement: 
\[\left| \vec{a} \right| = \left| \vec{b} \right| \Rightarrow \vec{a} = \vec{b}\]


The two vectors \[\hat{j} + \hat{k}\] and \[3 \hat{i} - \hat{j} + 4 \hat{k}\] represents the sides \[\overrightarrow{AB}\] and \[\overrightarrow{AC}\] respectively of a triangle ABC. Find the length of the median through A.


Define unit vector.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×