English

Show that the Points A, B, C with Position Vectors `2hati- Hatj + Hatk`, `Hati - 3hatj - 5hatk` and `3hati - 4hatj - 4hatk` Respectively, Are the Vertices of a Right-angled Triangle. Hence Find the Area of the Triangle - Mathematics

Advertisements
Advertisements

Question

Show that the points A, B, C with position vectors `2hati- hatj + hatk`, `hati - 3hatj - 5hatk` and `3hati - 4hatj - 4hatk` respectively, are the vertices of a right-angled triangle. Hence find the area of the triangle

Solution

Given

`veca =  2hati - hatj + hatk`

`vecb = hati -3hatj - 5hatk`

`vecc = 3hati - 4hatj - 4hatk`

then

`bar(AB) = vecb - veca`

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March) All India Set 1

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the angle between the vectors `hati-hatj and hatj-hatk`


If `veca and vecb` are perpendicular vectors, `|veca+vecb| = 13 and |veca| = 5` ,find the value of `|vecb|.`


Show that the vectors `2hati - 3hatj + 4hatk` and `-4hati + 6hatj -  8hatk` are collinear.


Evaluate the product `(3veca - 5vecb).(2veca + 7vecb)`.


Find `|vecx|`, if for a unit vector veca , `(vecx -  veca).(vecx + veca) = 12`.


If  `veca.veca = 0` and `veca . vecb = 0,` then what can be concluded about the vector `vecb`?


If either vector `veca = vec0`  or `vecb = vec0`, then `veca.vecb = 0`. But the converse need not be true. Justify your answer with an example.


Show that the vectors `2hati - hatj + hatk, hati - 3hatj - 5hatk`  and `3hati - 4hatj - 4hatk` from the vertices of a right angled triangle.


If \[\vec{a,} \vec{b}\] are two vectors, then write the truth value of the following statement: 
 \[\vec{a} = - \vec{b} \Rightarrow \left| \vec{a} \right| = \left| \vec{b} \right|\]


If \[\vec{a,} \vec{b}\] are two vectors, then write the truth value of the following statement: 
\[|\vec{a}| =  |\vec{b}| \Rightarrow \vec{a}  = ± \vec{b} \]


If \[\vec{a,} \vec{b}\] are two vectors, then write the truth value of the following statement: 
\[\left| \vec{a} \right| = \left| \vec{b} \right| \Rightarrow \vec{a} = \vec{b}\]


The two vectors \[\hat{j} + \hat{k}\] and \[3 \hat{i} - \hat{j} + 4 \hat{k}\] represents the sides \[\overrightarrow{AB}\] and \[\overrightarrow{AC}\] respectively of a triangle ABC. Find the length of the median through A.


Define unit vector.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×