Advertisements
Advertisements
Question
Show that the vectors `2hati - hatj + hatk, hati - 3hatj - 5hatk` and `3hati - 4hatj - 4hatk` from the vertices of a right angled triangle.
Solution
Let the given vectors `2hati - hatj + hatk, hati - 3hatj - 5hatk and 3hati - 4hatj - 4hatk` be represented by A, B, C respectively,
Position vector of A `vec(OA) = 2hati - hatj + hatk`
Position vector of B `vec(OB) = hati - 3hatj - 5hatk`
Position vector of C `vec(OC) = 3hati - 4hatj - 4hatk`
Now `vec(AB) = vec(OB) - vec(OA)`
= `(hat1 - 3hatj - 5hatk) - (2hat1 - hatj + hatk)`
= `-hat1 - 2hatj + 6hatk`
`|vec(AB)| = sqrt((-1)^2 + (-2)^2 + (-6)^2) `
`= sqrt(1 + 4 + 36) `
`= sqrt41`
`vec(BC) = vec(OC) - vec(OB) = (3hat1 - 4hatj - 4hatk) - (hat1 - 3hatj - 5hatk) = 2hati - hatj + hatk`
`|vec(BC)| = sqrt((2)^2 + (-1)^2 + (1)^2) `
`= sqrt6`
`vec(CA) = vec(OA) - vec(OC) = (2hati - hatj + hatk) - (3hat1 - 4hatj - 4hatk) = -hati + 3hatj + 5hatk`
`|vec(CA)| = sqrt((-1)^2 + (3)^2 + (5)^2) `
`= sqrt35`
For right angled ΔABC where ∠C = 90°, then
`|vec(AB)|^2 = |vec(BC)|^2 + |vec(CA)|^2`
41 = 6 + 35 = 41
Therefore, a right-angled triangle is constructed from the given vectors.
Hence, proved
APPEARS IN
RELATED QUESTIONS
Find the angle between the vectors `hati-hatj and hatj-hatk`
If `veca and vecb` are perpendicular vectors, `|veca+vecb| = 13 and |veca| = 5` ,find the value of `|vecb|.`
Show that the vectors `2hati - 3hatj + 4hatk` and `-4hati + 6hatj - 8hatk` are collinear.
Evaluate the product `(3veca - 5vecb).(2veca + 7vecb)`.
Find `|vecx|`, if for a unit vector veca , `(vecx - veca).(vecx + veca) = 12`.
If `veca.veca = 0` and `veca . vecb = 0,` then what can be concluded about the vector `vecb`?
If either vector `veca = vec0` or `vecb = vec0`, then `veca.vecb = 0`. But the converse need not be true. Justify your answer with an example.
Show that the points A, B, C with position vectors `2hati- hatj + hatk`, `hati - 3hatj - 5hatk` and `3hati - 4hatj - 4hatk` respectively, are the vertices of a right-angled triangle. Hence find the area of the triangle
If \[\vec{a,} \vec{b}\] are two vectors, then write the truth value of the following statement:
\[\vec{a} = - \vec{b} \Rightarrow \left| \vec{a} \right| = \left| \vec{b} \right|\]
If \[\vec{a,} \vec{b}\] are two vectors, then write the truth value of the following statement:
\[|\vec{a}| = |\vec{b}| \Rightarrow \vec{a} = ± \vec{b} \]
If \[\vec{a,} \vec{b}\] are two vectors, then write the truth value of the following statement:
\[\left| \vec{a} \right| = \left| \vec{b} \right| \Rightarrow \vec{a} = \vec{b}\]
The two vectors \[\hat{j} + \hat{k}\] and \[3 \hat{i} - \hat{j} + 4 \hat{k}\] represents the sides \[\overrightarrow{AB}\] and \[\overrightarrow{AC}\] respectively of a triangle ABC. Find the length of the median through A.
Define unit vector.