English

Show that the vectors 2i^-j^+k^,i^-3j^-5k^ and 3i^-4j^-4k^ from the vertices of a right angled triangle. - Mathematics

Advertisements
Advertisements

Question

Show that the vectors `2hati - hatj + hatk, hati - 3hatj - 5hatk`  and `3hati - 4hatj - 4hatk` from the vertices of a right angled triangle.

Sum

Solution

Let the given vectors `2hati - hatj + hatk, hati - 3hatj - 5hatk and 3hati - 4hatj - 4hatk` be represented by A, B, C respectively,

Position vector of A `vec(OA) = 2hati - hatj + hatk`

Position vector of B `vec(OB) = hati - 3hatj - 5hatk`

Position vector of C `vec(OC) = 3hati - 4hatj - 4hatk`

Now `vec(AB) = vec(OB) - vec(OA)`

= `(hat1 - 3hatj - 5hatk) - (2hat1 - hatj + hatk)`

= `-hat1 - 2hatj + 6hatk`

`|vec(AB)| = sqrt((-1)^2 + (-2)^2 + (-6)^2) `

`= sqrt(1 + 4 + 36) `

`= sqrt41`

`vec(BC) = vec(OC) - vec(OB) = (3hat1 - 4hatj - 4hatk) - (hat1 - 3hatj - 5hatk) = 2hati - hatj + hatk`

`|vec(BC)| = sqrt((2)^2 + (-1)^2 + (1)^2) `

`= sqrt6`

`vec(CA) = vec(OA) - vec(OC) = (2hati - hatj + hatk) - (3hat1 - 4hatj - 4hatk) = -hati + 3hatj + 5hatk`

`|vec(CA)| = sqrt((-1)^2 + (3)^2 + (5)^2) `

`= sqrt35`

For right angled ΔABC where ∠C = 90°, then

`|vec(AB)|^2 = |vec(BC)|^2 + |vec(CA)|^2`

41 = 6 + 35 = 41

Therefore, a right-angled triangle is constructed from the given vectors.

Hence, proved

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Vector Algebra - Exercise 10.3 [Page 448]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 10 Vector Algebra
Exercise 10.3 | Q 17 | Page 448

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the angle between the vectors `hati-hatj and hatj-hatk`


If `veca and vecb` are perpendicular vectors, `|veca+vecb| = 13 and |veca| = 5` ,find the value of `|vecb|.`


Show that the vectors `2hati - 3hatj + 4hatk` and `-4hati + 6hatj -  8hatk` are collinear.


Evaluate the product `(3veca - 5vecb).(2veca + 7vecb)`.


Find `|vecx|`, if for a unit vector veca , `(vecx -  veca).(vecx + veca) = 12`.


If  `veca.veca = 0` and `veca . vecb = 0,` then what can be concluded about the vector `vecb`?


If either vector `veca = vec0`  or `vecb = vec0`, then `veca.vecb = 0`. But the converse need not be true. Justify your answer with an example.


Show that the points A, B, C with position vectors `2hati- hatj + hatk`, `hati - 3hatj - 5hatk` and `3hati - 4hatj - 4hatk` respectively, are the vertices of a right-angled triangle. Hence find the area of the triangle


If \[\vec{a,} \vec{b}\] are two vectors, then write the truth value of the following statement: 
 \[\vec{a} = - \vec{b} \Rightarrow \left| \vec{a} \right| = \left| \vec{b} \right|\]


If \[\vec{a,} \vec{b}\] are two vectors, then write the truth value of the following statement: 
\[|\vec{a}| =  |\vec{b}| \Rightarrow \vec{a}  = ± \vec{b} \]


If \[\vec{a,} \vec{b}\] are two vectors, then write the truth value of the following statement: 
\[\left| \vec{a} \right| = \left| \vec{b} \right| \Rightarrow \vec{a} = \vec{b}\]


The two vectors \[\hat{j} + \hat{k}\] and \[3 \hat{i} - \hat{j} + 4 \hat{k}\] represents the sides \[\overrightarrow{AB}\] and \[\overrightarrow{AC}\] respectively of a triangle ABC. Find the length of the median through A.


Define unit vector.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×