Advertisements
Advertisements
Question
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
Solution
We have
\[I = \int\limits_\frac{- \pi}{2}^\frac{\pi}{2} \frac{\cos x}{\left( 1 + e^x \right)}dx . . . . . \left( i \right)\]
\[\text{ Using property } \int_a^b f\left( x \right) dx = \int_a^b f\left( a + b - x \right) dx, \text { we get }\]
\[I = \int\limits_\frac{- \pi}{2}^\frac{\pi}{2} \frac{\cos\left( 0 - x \right)}{1 + e^\left( 0 - x \right)}dx\]
\[ = \int\limits_\frac{- \pi}{2}^\frac{\pi}{2} \frac{\cos x}{1 + e^{- x}}dx\]
\[ \Rightarrow I = \int\limits_\frac{- \pi}{2}^\frac{\pi}{2} e^x \frac{\left( \cos x \right)}{\left( 1 + e^x \right)}dx . . . . . \left( ii \right)\]
Adding (i) and (ii), we get
\[2I = \int\limits_\frac{- \pi}{2}^\frac{\pi}{2} \cos x dx = \left[ \sin x \right]_\frac{- \pi}{2}^\frac{\pi}{2} = 1 + 1 = 2\]
\[ \therefore I = 1\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Choose the correct alternative:
Γ(1) is
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
Find: `int logx/(1 + log x)^2 dx`