English

Evaluate: π / 2 ∫ − π / 2 Cos X 1 + E X D X . - Mathematics

Advertisements
Advertisements

Question

Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .

 

Solution

We have

\[I = \int\limits_\frac{- \pi}{2}^\frac{\pi}{2} \frac{\cos x}{\left( 1 + e^x \right)}dx . . . . . \left( i \right)\]

\[\text{ Using property } \int_a^b f\left( x \right) dx = \int_a^b f\left( a + b - x \right) dx, \text { we get }\]

\[I = \int\limits_\frac{- \pi}{2}^\frac{\pi}{2} \frac{\cos\left( 0 - x \right)}{1 + e^\left( 0 - x \right)}dx\]

\[ = \int\limits_\frac{- \pi}{2}^\frac{\pi}{2} \frac{\cos x}{1 + e^{- x}}dx\]

\[ \Rightarrow I = \int\limits_\frac{- \pi}{2}^\frac{\pi}{2} e^x \frac{\left( \cos x \right)}{\left( 1 + e^x \right)}dx . . . . . \left( ii \right)\]

Adding (i) and (ii), we get

\[2I = \int\limits_\frac{- \pi}{2}^\frac{\pi}{2} \cos x dx = \left[ \sin x \right]_\frac{- \pi}{2}^\frac{\pi}{2} = 1 + 1 = 2\]

\[ \therefore I = 1\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
2014-2015 (March) Foreign Set 2

RELATED QUESTIONS

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_1^e \frac{\log x}{x} dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_0^2 e^x dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_2^3 x^2 dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]


Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


Choose the correct alternative:

Γ(1) is


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


Find: `int logx/(1 + log x)^2 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×