Advertisements
Advertisements
Question
Solution
\[Let I = \int_\frac{- \pi}{2}^\frac{\pi}{2} \sin^3 x d x\]
\[ = \int_\frac{- \pi}{2}^\frac{\pi}{2} \sin x\left( 1 - \cos^2 x \right)dx\]
\[ = \int_\frac{- \pi}{2}^\frac{\pi}{2} \sin x dx - \int_\frac{- \pi}{2}^\frac{\pi}{2} \sin x \cos^2 x dx\]
\[ = \left[ - \cos x \right]_\frac{- \pi}{2}^\frac{\pi}{2} + \left[ \frac{\cos^3 x}{3} \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ = 0 + 0 = 0\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals:
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate each of the following integral:
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.