Advertisements
Advertisements
Question
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
Solution
\[\int_0^\frac{\pi}{4} \tan^4 x d x\]
\[ = \int_0^\frac{\pi}{4} \tan^2 x\left( se c^2 x - 1 \right) d x\]
\[ = \int_0^\frac{\pi}{4} \tan^2 x se c^2 x dx - \int_0^\frac{\pi}{4} \tan^2 x dx\]
\[ = \left[ \frac{\tan^3 x}{3} \right]_0^\frac{\pi}{4} - \left[ \tan x - x \right]_0^\frac{\pi}{4} \]
\[ = \frac{1}{3} - 1 + \frac{\pi}{4}\]
\[ = \frac{\pi}{4} - \frac{2}{3}\]
APPEARS IN
RELATED QUESTIONS
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`