Advertisements
Advertisements
Question
Solution
\[Let\, I = \int_0^\frac{\pi}{2} \log\left( \frac{3 + 5\cos x}{3 + 5\sin x} \right) d x ................(1)\]
\[ = \int_0^\frac{\pi}{2} log\left[ \frac{3 + 5\cos\left( \frac{\pi}{2} - x \right)}{3 + 5\sin\left( \frac{\pi}{2} - x \right)} \right] dx\]
\[ = \int_0^\frac{\pi}{2} log\left( \frac{3 + 5\sin x}{3 + 5\cos x} \right) dx .................(2)\]
\[\text{Adding (1) and (2)}\]
\[2I = \int_0^\frac{\pi}{2} \left[ \log\left( \frac{3 + 5\cos x}{3 + 5\sin x} \right) + log\left( \frac{3 + 5\sin x}{3 + 5\cos x} \right) \right] d x\]
\[ = \int_0^\frac{\pi}{2} \log\left( \frac{3 + 5\cos x}{3 + 5\sin x} \times \frac{3 + 5\sin x}{3 + 5\cos x} \right) dx\]
\[ = \int_0^\frac{\pi}{2} \log1 dx = 0\]
\[Hence\ I = 0\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
If f(x) is a continuous function defined on [−a, a], then prove that
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`