Advertisements
Advertisements
Question
Solution
\[Let\ x^2 = t . Then, 2x\ dx = dt\]
\[When\ x = 1, t = 1\ and\ x = 2, t = 4\]
\[ \therefore I = \int_1^2 \frac{3x}{9 x^2 - 1} d x\]
\[ \Rightarrow I = \frac{3}{2} \int_1^4 \frac{dt}{9t - 1}\]
\[ \Rightarrow I = \frac{3}{18} \left[ \log \left( 9t - 1 \right) \right]_1^4 \]
\[ \Rightarrow I = \frac{3}{18}\left( \log 35 - \log 8 \right)\]
\[ \Rightarrow I = \frac{\left( \log 35 - \log 8 \right)}{6}\]
APPEARS IN
RELATED QUESTIONS
If f is an integrable function, show that
Evaluate each of the following integral:
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.