Advertisements
Advertisements
Question
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
Options
0
π/2
π/4
none of these
Solution
π/4
\[Let\ I = \int_0^\frac{\pi}{2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} d x ..............(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{\sqrt{\cos\left( \frac{\pi}{2} - x \right)}}{\sqrt{\cos\left( \frac{\pi}{2} - x \right)} + \sqrt{\sin\left( \frac{\pi}{2} - x \right)}} d x \]
\[ = \int_0^\frac{\pi}{2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}}dx ...............(2)\]
\[\text{Adding (1) and (2)}\]
\[2I = \int_0^\frac{\pi}{2} \left[ \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} + \frac{\sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}} \right] d x\]
\[ = \int_0^\frac{\pi}{2} dx\]
\[ = \left[ x \right]_0^\frac{\pi}{2} = \frac{\pi}{2}\]
\[Hence\ I = \frac{\pi}{4}\]
APPEARS IN
RELATED QUESTIONS
If f is an integrable function, show that
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Find: `int logx/(1 + log x)^2 dx`