Advertisements
Advertisements
Question
Solution
\[\text{We have}, \]
\[ I = \int_0^\pi \frac{x}{1 + \cos\alpha \sin x} d x . . . . . \left( 1 \right)\]
\[ = \int_0^\pi \frac{\pi - x}{1 + \cos\alpha \sin\left( \pi - x \right)}dx\]
\[ = \int_0^\pi \frac{\pi - x}{1 + \cos\alpha \sin x}dx . . . . . \left( 2 \right)\]
\[\text{Adding} \left( 1 \right) and \left( 2 \right) \text{we get}, \]
\[2I = \int_0^\pi \frac{x + \pi - x}{1 + \cos\alpha \sin x} d x\]
\[ \Rightarrow I = \frac{\pi}{2} \int_0^\pi \frac{1}{1 + \cos\alpha\ sinx} dx\]
\[= \frac{\pi}{2} \int_0^\pi \frac{1}{1 + \cos\alpha sinx}\]
\[ = \frac{\pi}{2} \int_0^\pi \frac{1}{1 + \cos\alpha \frac{2\tan\frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ = \frac{\pi}{2} \int_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + 2\cos\alpha \tan \frac{x}{2}}dx\]
\[ = \frac{\pi}{2} \int_0^\pi \frac{\sec^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + 2\cos\alpha \tan \frac{x}{2}}dx\]
\[\text{Putting }\tan\frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 x dx = dt\]
\[\text{When }x \to 0; t \to 0\]
\[\text{and }x \to \pi; t \to \infty \]
\[ \therefore I = \frac{\pi}{2} \int_0^\infty \frac{2}{1 + t^2 + 2\cos\alpha t}dt\]
\[ = \frac{\pi}{2} \int_0^\infty \frac{2}{\left( t + \cos\alpha \right)^2 - \cos^2 \alpha + 1}dt\]
\[ = \pi \int_0^\infty \frac{1}{\left( t + \cos\alpha \right)^2 + \sin^2 \alpha}dt\]
\[ = \pi \left[ \frac{1}{\sin \alpha} \tan^{- 1} \left( \frac{t + \cos \alpha}{\sin \alpha} \right) \right]_0^1 \]
\[ = \frac{\pi}{sin\alpha}\left[ \tan^{- 1} \left( \infty \right) - \tan^{- 1} \left( \cot\alpha \right) \right]\]
\[ = \frac{\pi}{sin\alpha}\left[ \frac{\pi}{2} - \tan^{- 1} \left( \tan\left( \frac{\pi}{2} - \alpha \right) \right) \right]\]
\[ = \frac{\pi\alpha}{sin\alpha}\]
APPEARS IN
RELATED QUESTIONS
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_2^3 e^{- x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: