Advertisements
Advertisements
Question
Solution
\[\text{Let }I = \int_0^\frac{\pi}{2} \sqrt{1 + \sin x } d x . Then, \]
\[I = \int_0^\frac{\pi}{2} \sqrt{1 + \sin x} \times \frac{\sqrt{1 - \sin x}}{\sqrt{1 - \sin x}} dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\sqrt{1 - \sin^2 x}}{\sqrt{1 - \sin x}} dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\cos x}{\sqrt{1 - \sin x}} dx\]
\[Let 1 - \sin x = u\]
\[ \Rightarrow - \cos x dx = du\]
\[ \therefore I = \int\frac{- du}{\sqrt{u}}\]
\[ \Rightarrow I = \left[ - 2\sqrt{u} \right]\]
\[ \Rightarrow I = \left[ - 2\sqrt{1 - \sin x} \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = 0 + 2\]
\[ \Rightarrow I = 2\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Evaluate each of the following integral:
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Evaluate the following:
Γ(4)
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.