English

2 ∫ 0 ( X 2 − X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^2 \left( x^2 - x \right) dx\]
Sum

Solution

\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[\text{where }h = \frac{b - a}{n}\]

\[\text{Here }a = 0, b = 2, f\left( x \right) = x^2 - x, h = \frac{2 - 0}{n} = \frac{2}{n}\]
Therefore,
\[I = \int_0^2 \left( x^2 - x \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 0 \right) + f\left( 0 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left\{ 0 + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 0 - 0 \right) + \left( h^2 - h \right) + . . . . . . . . . . . . . . . + \left\{ \left( n - 1 \right)^2 h^2 - \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ h^2 \left\{ 1^2 + 2^2 + 3^2 . . . . . . . . . + \left( n - 1 \right)^2 \right\} - h\left\{ 1 + 2 + . . . . . + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ h^2 \frac{n\left( n - 1 \right)\left( 2n - 1 \right)}{6} - h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{2}{n}\left[ \frac{2\left( n - 1 \right)\left( 2n - 1 \right)}{3n} - n + 1 \right]\]
\[ = \lim_{n \to \infty} 2\left[ \frac{2}{3}\left( 1 - \frac{1}{n} \right)\left( 2 - \frac{1}{n} \right) - 1 + \frac{1}{n} \right]\]
\[ = \frac{8}{3} - 2\]
\[ = \frac{2}{3}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.6 [Page 111]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.6 | Q 31 | Page 111

RELATED QUESTIONS

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^\pi 5 \left( 5 - 4 \cos \theta \right)^{1/4} \sin \theta\ d \theta\]

\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]

\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 


\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int\limits_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} + \sqrt[4]{9 - x}} dx\]

If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int\limits_0^\pi x \cos^2 x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a x f\left( x^2 \right) dx = 0\]

 


\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_1^3 \left( 2x + 3 \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_2^3 x^2 dx\]

\[\int\limits_0^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

\[\int\limits_0^\infty e^{- x} dx .\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]


\[\int\limits_0^2 x\left[ x \right] dx .\]

The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to

\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

\[\int\limits_0^1 \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\} dx\] is equal to

\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7)  "d"x`


Choose the correct alternative:

Γ(n) is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×