English

Given that ∞ ∫ 0 X 2 ( X 2 + a 2 ) ( X 2 + B 2 ) ( X 2 + C 2 ) D X = π 2 ( a + B ) ( B + C ) ( C + a ) , the Value of ∞ ∫ 0 D X ( X 2 + 4 ) ( X 2 + 9 ) , - Mathematics

Advertisements
Advertisements

Question

Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]

Options

  • \[\frac{\pi}{60}\]
  • \[\frac{\pi}{20}\]
  • \[\frac{\pi}{40}\]
  • \[\frac{\pi}{80}\]
MCQ

Solution

\[\frac{\pi}{60}\]

 

\[ \int_0^\infty \frac{1}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)} d x\]
\[ = \frac{1}{5} \int_0^\infty \frac{1}{\left( x^2 + 4 \right)} - \frac{1}{\left( x^2 + 9 \right)}dx\]
\[ = \frac{1}{5} \left[ \frac{1}{2} \tan^{- 1} \frac{x}{2} - \frac{1}{3} \tan^{- 1} \frac{x}{3} \right]_0^\infty \]
\[ = \frac{1}{5}\left[ \frac{1}{2} \times \frac{\pi}{2} - \frac{1}{3} \times \frac{\pi}{2} \right]\]
\[ = \frac{1}{5} \times \frac{\pi}{12}\]
\[ = \frac{\pi}{60}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - MCQ [Page 118]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
MCQ | Q 13 | Page 118

RELATED QUESTIONS

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int_0^\frac{1}{2} \frac{1}{\left( 1 + x^2 \right)\sqrt{1 - x^2}}dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]

\[\int\limits_a^b e^x dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 - \cos 2x}\ dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]

\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\cot}x} dx\] is

The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Choose the correct alternative:

Γ(n) is


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×