Advertisements
Advertisements
Question
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
Options
- \[\frac{\pi}{60}\]
- \[\frac{\pi}{20}\]
- \[\frac{\pi}{40}\]
- \[\frac{\pi}{80}\]
Solution
\[\frac{\pi}{60}\]
\[ \int_0^\infty \frac{1}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)} d x\]
\[ = \frac{1}{5} \int_0^\infty \frac{1}{\left( x^2 + 4 \right)} - \frac{1}{\left( x^2 + 9 \right)}dx\]
\[ = \frac{1}{5} \left[ \frac{1}{2} \tan^{- 1} \frac{x}{2} - \frac{1}{3} \tan^{- 1} \frac{x}{3} \right]_0^\infty \]
\[ = \frac{1}{5}\left[ \frac{1}{2} \times \frac{\pi}{2} - \frac{1}{3} \times \frac{\pi}{2} \right]\]
\[ = \frac{1}{5} \times \frac{\pi}{12}\]
\[ = \frac{\pi}{60}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Evaluate each of the following integral:
Solve each of the following integral:
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Choose the correct alternative:
Γ(n) is
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`