English

2 ∫ 0 ( X 2 + 4 ) D X - Mathematics

Advertisements
Advertisements

Question

02(x2+4)dx
Sum

Solution

abf(x)dx=limh0h[f(a)+f(a+h)+f(a+2h)...............+f(a+(n1)h)]
where h=ban

Here a=0,b=2,f(x)=x2+4,h=20n=2n
Therefore,
I=02(x2+4)dx
=limh0h[f(0)+f(0+h)+....................+f{0+(n1)h}]
=limh0h[(0+4)+(h2+4)+...............+{(n1)2h2+4}]
=limh0h[4n+h2{12+22+32.........+(n1)2}]
=limh0h[4n+h2n(n1)(2n1)6]
=limn2n[4n+2(n1)(2n1)3n]
=limn2{4+23(11n)(21n)}
=8+83
=323

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.6 [Page 110]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.6 | Q 12 | Page 110
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.