Advertisements
Advertisements
Question
Evaluate each of the following integral:
Solution
\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]
\[ = - \int_0^\frac{\pi}{2} e^x \left[ \cos x + \left( - \sin x \right) \right]dx\]
\[ = \left.- {e^x \cos x}\right|_0^\frac{\pi}{2} .............\left\{ \int e^x \left[ f\left( x \right) + f'\left( x \right) \right]dx = e^x f\left( x \right) + C \right\}\]
\[ = - \left( e^\frac{\pi}{2} \cos\frac{\pi}{2} - e^0 \cos0 \right)\]
\[ = - \left( e^\frac{\pi}{2} \times 0 - 1 \times 1 \right)\]
\[ = - \left( 0 - 1 \right)\]
\[ = 1\]
RELATED QUESTIONS
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
`int_0^(2a)f(x)dx`
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
`int x^3/(x + 1)` is equal to ______.