Advertisements
Advertisements
Question
Solution
\[I = \int_0^1 \frac{2x}{5 x^2 + 1} d x + \int_0^1 \frac{3}{5 x^2 + 1} d x\]
\[ \Rightarrow I = \frac{1}{5} \int_0^1 \frac{10x}{5 x^2 + 1} d x + 3 \int_0^1 \frac{1}{\left( \sqrt{5}x \right)^2 + 1^2} d x\]
\[ \Rightarrow I = \frac{1}{5} \left[ \log \left( 5 x^2 + 1 \right) \right]_0^1 + \frac{3}{\sqrt{5}} \left[ \tan^{- 1} \left( \sqrt{5}x \right) \right]_0^1 \]
\[ \Rightarrow I = \frac{1}{5} \log 6 + \frac{3}{\sqrt{5}} \tan^{- 1} \sqrt{5}\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`