Advertisements
Advertisements
Question
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
Solution
We have,
\[\left| 2x - 1 \right| = \begin{cases} - \left( 2x - 1 \right)&,& 0 \leq x \leq \frac{1}{2}\\ 2x - 1&,& \frac{1}{2} \leq x \leq 1\end{cases}\]
\[ \therefore \int_0^1 \left| 2x - 1 \right| d x\]
\[ = \int_0^\frac{1}{2} - \left( 2x - 1 \right) dx + \int_\frac{1}{2}^1 \left( 2x - 1 \right) dx\]
\[ = \left[ - x^2 + x \right]_0^\frac{1}{2} + \left[ x^2 - x \right]_\frac{1}{2}^1 \]
\[ = \frac{- 1}{4} + \frac{1}{2} + 1 - 1 - \frac{1}{4} + \frac{1}{2}\]
\[ = \frac{1}{2}\]
APPEARS IN
RELATED QUESTIONS
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`