Advertisements
Advertisements
Question
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
Solution
Let
\[I = \int_0^{{\pi}/{4}}\frac{\sin x + \cos x}{16 + 9\sin2x}dx\]
Put – cosx + sinx = t .....(1)
Then,
(sin x + cos x) dx = dt
As, x → 0, t → −1
Also, x → \[\frac{\pi}{4}\] t → 0
Squaring (1) both sides, we get
cos2x + sin2x – 2cosx sinx = t2
⇒ 1 – sin2x = t2
⇒ sin 2x = 1 – t2
Substituting these values, we get
\[I = \int_{- 1}^0 \frac{dt}{16 + 9 \left( 1 - t^2 \right)}\]
\[ = \int_{- 1}^0 \frac{dt}{25 - 9 t^2}\]
\[ = \frac{1}{9} \int_{- 1}^0 \frac{dt}{\left( \frac{5}{3} \right)^2 - t^2}\]
\[ = \frac{1}{9} \left[ \frac{1}{2a}\log \left| \frac{a + t}{a - t} \right| \right]_{- 1}^0 \text { where a } = \frac{5}{3}\]
\[ = \frac{1}{9} \left[ \frac{3}{2\left( 5 \right)}\log \left| \frac{\frac{5}{3} + t}{\frac{5}{3} - t} \right| \right]_{- 1}^0 \]
\[ = \frac{1}{9} \left[ \frac{3}{10}\left\{ \log 1 - \log \frac{1}{4} \right\} \right]^{- 1} \]
\[ = \frac{3}{90}\left( - \log \frac{1}{4} \right) = \frac{1}{30} \log 4\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_0^4 x dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is