English

Evaluate : π ∫ 0 / 4 Sin X + Cos X 16 + 9 Sin 2 X D X . - Mathematics

Advertisements
Advertisements

Question

Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .

Solution

Let

\[I = \int_0^{{\pi}/{4}}\frac{\sin x + \cos x}{16 + 9\sin2x}dx\]

Put – cosx + sinx = t    .....(1)
Then,
(sin x + cos x) dx = dt
As, x → 0, t → −1
Also, x → \[\frac{\pi}{4}\] t → 0

Squaring (1) both sides, we get
cos2x + sin2x – 2cosx sinx = t2
⇒ 1 – sin2x = t2
⇒ sin 2x = 1 – t2
Substituting these values, we get

\[I = \int_{- 1}^0 \frac{dt}{16 + 9 \left( 1 - t^2 \right)}\]

\[ = \int_{- 1}^0 \frac{dt}{25 - 9 t^2}\]

\[ = \frac{1}{9} \int_{- 1}^0 \frac{dt}{\left( \frac{5}{3} \right)^2 - t^2}\]

\[ = \frac{1}{9} \left[ \frac{1}{2a}\log \left| \frac{a + t}{a - t} \right| \right]_{- 1}^0 \text { where a } = \frac{5}{3}\]

\[ = \frac{1}{9} \left[ \frac{3}{2\left( 5 \right)}\log \left| \frac{\frac{5}{3} + t}{\frac{5}{3} - t} \right| \right]_{- 1}^0 \]

\[ = \frac{1}{9} \left[ \frac{3}{10}\left\{ \log 1 - \log \frac{1}{4} \right\} \right]^{- 1} \]

\[ = \frac{3}{90}\left( - \log \frac{1}{4} \right) = \frac{1}{30} \log 4\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
2017-2018 (March) All India Set 3

RELATED QUESTIONS

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int_0^\frac{1}{2} \frac{1}{\left( 1 + x^2 \right)\sqrt{1 - x^2}}dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]

\[\int\limits_0^\infty e^{- x} dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]


\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]


\[\int\limits_0^4 x dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


Evaluate the following:

`int_0^oo "e"^(- x/2) x^5  "d"x`


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×