Advertisements
Advertisements
Question
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Sum
Solution
`int_1^2 (x "d"x)/(x^2 + 1) = 1/2 int_1^2 (2xdx)/(x^2 + 1)`
= `1/2 int_1^2 ("d"(x^2 + 1))/(x^2 + 1)`
=`1/2 [log|x^2 + 1|]_1^2`
= `1/2 [log|2^2 + 1| - log|1^2+ 1|]`
= `1/2 [log 5 - log 2]`
= `1/2 log[5/2]` .......`{"Using" log "a" - log "b" = log ("a"/"b")}`
shaalaa.com
Definite Integrals
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]
\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]
\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]
\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]
\[\int\limits_0^2 \sqrt{4 - x^2} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.