English

Π / 2 ∫ 0 D X a Cos X + B Sin X a , B > 0 - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

Solution

\[\int_0^\frac{\pi}{2} \frac{1}{a\cos x + b \sin x} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{a\left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) + b\left( \frac{2\tan\frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{a - a \tan^2 \frac{x}{2} + 2b \tan\frac{x}{2}}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{se c^2 \frac{x}{2}}{a - ata n^2 \frac{x}{2} + 2b tan\frac{x}{2}}dx\]
\[Let\ \tan\frac{x}{2} = t, Then, \frac{1}{2}se c^2 \frac{x}{2}dx = dt\]
\[When\ x = 0, t = 0, x = \frac{\pi}{2}, t = 1\]
\[\text{Therefore the integral becomes}\]
\[I = \int_0^1 \frac{2dt}{a - {at}^2 + 2bt}\]
\[ = \int_0^1 \frac{2dt}{- a\left[ t^2 - \frac{2bt}{a} - 1 \right]}\]
\[ = \frac{2}{a} \int_0^1 \frac{dt}{- \left[ \left( t - \frac{b}{a} \right)^2 - 1 - \frac{b^2}{a^2} \right]}\]
\[ = \frac{2}{a} \int_0^1 \frac{dt}{\left( \frac{b^2}{a^2} + 1 \right) - \left( t - \frac{b}{a} \right)^2}\]
\[ = \frac{2}{a}\left[ \frac{1}{2\sqrt{\frac{a^2 + b^2}{a^2}}} \left( \log\left| \frac{\sqrt{\frac{a^2 + b^2}{a^2}} + \left( t - \frac{b}{a} \right)}{\sqrt{\frac{a^2 + b^2}{a^2}} - \left( t - \frac{b}{a} \right)} \right| \right)_0^1 \right]\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.2 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.2 | Q 19 | Page 39

RELATED QUESTIONS

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_0^{\pi/2} \sin x \sin 2x\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int\limits_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi\ d\phi\]

 


\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int_0^\pi \cos x\left| \cos x \right|dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{- \frac{\pi}{2}}{\sqrt{\cos x \sin^2 x}}dx\]

\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

\[\int\limits_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} + \sqrt[4]{9 - x}} dx\]

\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_2^3 x^2 dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals

 


\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]


\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]


\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Evaluate the following:

Γ(4)


If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×