Advertisements
Advertisements
Question
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
Solution
We have,
\[I = \int_0^\pi \sin^3 x\left( 1 + 2\cos x \right) \left( 1 + \cos x \right)^2 d x\]
\[ = \int_0^\pi \sin^2 x\left( 1 + 2\cos x \right) \left( 1 + \cos x \right)^2 \sin x d x\]
\[ = \int_0^\pi \left( 1 - \cos^2 x \right)\left( 1 + 2\cos x \right) \left( 1 + \cos x \right)^2 \sin x d x\]
\[\text{Putting }\cos x = t\]
\[ \Rightarrow - \sin x dx = dt\]
\[\text{When }x \to 0; t \to 1\]
\[\text{and }x \to \pi; t \to - 1\]
\[ \therefore I = - \int_1^{- 1} \left( 1 - t^2 \right)\left( 1 + 2t \right) \left( 1 + t \right)^2 dt\]
\[ = \int_{- 1}^1 \left( 1 - t^2 \right)\left( 1 + 2t \right) \left( 1 + t \right)^2 dt\]
\[ = \int_{- 1}^1 \left( 1 + 2t - t^2 - 2 t^3 \right)\left( 1 + 2t + t^2 \right)dt\]
\[ = \int_{- 1}^1 \left( 1 + 2t + t^2 + 2t + 4 t^2 + 2 t^3 - t^2 - 2 t^3 - t^4 - 2 t^3 - 4 t^4 - 2 t^5 \right)dt\]
\[ = \int_{- 1}^1 \left( 1 + 4t + 4 t^2 - 2 t^3 - 5 t^4 - 2 t^5 \right)dt\]
\[ = \left[ t + 2 t^2 + \frac{4 t^3}{3} - \frac{t^4}{2} - t^5 - \frac{t^6}{3} \right]_{- 1}^1 \]
\[ = 1 + 2 + \frac{4}{3} - \frac{1}{2} - 1 - \frac{1}{3} - \left( - 1 \right) - 2 \left( - 1 \right)^2 - \frac{4 \left( - 1 \right)^3}{3} + \frac{\left( - 1 \right)^4}{2} + \left( - 1 \right)^5 + \frac{\left( - 1 \right)^6}{3}\]
\[ = 1 + 2 + \frac{4}{3} - \frac{1}{2} - 1 - \frac{1}{3} + 1 - 2 + \frac{4}{3} + \frac{1}{2} - 1 + \frac{1}{3}\]
\[ = \frac{8}{3}\]
APPEARS IN
RELATED QUESTIONS
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is