English

Π ∫ 0 Sin 3 X ( 1 + 2 Cos X ) ( 1 + Cos X ) 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]

Sum

Solution

We have,

\[I = \int_0^\pi \sin^3 x\left( 1 + 2\cos x \right) \left( 1 + \cos x \right)^2 d x\]

\[ = \int_0^\pi \sin^2 x\left( 1 + 2\cos x \right) \left( 1 + \cos x \right)^2 \sin x d x\]

\[ = \int_0^\pi \left( 1 - \cos^2 x \right)\left( 1 + 2\cos x \right) \left( 1 + \cos x \right)^2 \sin x d x\]

\[\text{Putting }\cos x = t\]

\[ \Rightarrow - \sin x dx = dt\]

\[\text{When }x \to 0; t \to 1\]

\[\text{and }x \to \pi; t \to - 1\]

\[ \therefore I = - \int_1^{- 1} \left( 1 - t^2 \right)\left( 1 + 2t \right) \left( 1 + t \right)^2 dt\]

\[ = \int_{- 1}^1 \left( 1 - t^2 \right)\left( 1 + 2t \right) \left( 1 + t \right)^2 dt\]

\[ = \int_{- 1}^1 \left( 1 + 2t - t^2 - 2 t^3 \right)\left( 1 + 2t + t^2 \right)dt\]

\[ = \int_{- 1}^1 \left( 1 + 2t + t^2 + 2t + 4 t^2 + 2 t^3 - t^2 - 2 t^3 - t^4 - 2 t^3 - 4 t^4 - 2 t^5 \right)dt\]

\[ = \int_{- 1}^1 \left( 1 + 4t + 4 t^2 - 2 t^3 - 5 t^4 - 2 t^5 \right)dt\]

\[ = \left[ t + 2 t^2 + \frac{4 t^3}{3} - \frac{t^4}{2} - t^5 - \frac{t^6}{3} \right]_{- 1}^1 \]

\[ = 1 + 2 + \frac{4}{3} - \frac{1}{2} - 1 - \frac{1}{3} - \left( - 1 \right) - 2 \left( - 1 \right)^2 - \frac{4 \left( - 1 \right)^3}{3} + \frac{\left( - 1 \right)^4}{2} + \left( - 1 \right)^5 + \frac{\left( - 1 \right)^6}{3}\]

\[ = 1 + 2 + \frac{4}{3} - \frac{1}{2} - 1 - \frac{1}{3} + 1 - 2 + \frac{4}{3} + \frac{1}{2} - 1 + \frac{1}{3}\]

\[ = \frac{8}{3}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Revision Exercise [Page 121]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Revision Exercise | Q 14 | Page 121

RELATED QUESTIONS

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int_0^\frac{1}{2} \frac{1}{\left( 1 + x^2 \right)\sqrt{1 - x^2}}dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_0^2 e^x dx\]

\[\int\limits_a^b e^x dx\]

\[\int\limits_0^2 \left( 3 x^2 - 2 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_2^3 \frac{1}{x}dx\]

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]


\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×