Advertisements
Advertisements
Question
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
Solution
\[\int_1^2 \frac{1}{x^2} e^\frac{- 1}{x} d x\]
\[Let \frac{- 1}{x} = t, then \frac{1}{x^2} dx = dt\]
\[\text{When, }x \to 1 ; t \to - 1\]
\[\text{And }x \to 2 ; t \to \frac{- 1}{2}\]
Therefore the integral becomes
\[ \int_{- 1}^\frac{- 1}{2} e^t d t\]
\[ = \left[ e^t \right]_{- 1}^\frac{- 1}{2} \]
\[ = e^\frac{- 1}{2} - e^{- 1} \]
\[ = \frac{\sqrt{e} - 1}{e}\]
APPEARS IN
RELATED QUESTIONS
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Solve each of the following integral:
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following:
Γ(4)
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
Find: `int logx/(1 + log x)^2 dx`