Advertisements
Advertisements
Question
\[\int\limits_0^1 \tan^{- 1} x dx\]
Solution
\[\int_0^1 \tan^{- 1} x d x\]
\[ = \int_0^1 \tan^{- 1} x \times 1 d x\]
\[ = \left[ \tan^{- 1} x x \right]_0^1 - \int_0^1 \frac{x}{1 + x^2}dx\]
\[ = \left[ x \tan^{- 1} x \right]_0^1 - \frac{1}{2} \left[ \log\left( 1 + x^2 \right) \right]_0^1 \]
\[ = \frac{\pi}{4} - 0 - \frac{1}{2}\log2 + 0\]
\[ = \frac{\pi}{4} - \frac{1}{2}\log2\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Evaluate the following integral:
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Choose the correct alternative:
Γ(1) is
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.