Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\frac{\pi}{2} \frac{\sin^n x}{\sin^n x + \cos^n x} d x ...............(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{\sin^n \left( \frac{\pi}{2} - x \right)}{\sin^n \left( \frac{\pi}{2} - x \right) + \cos^n \left( \frac{\pi}{2} - x \right)} dx ..........................\left[\text{Using }\ \int_0^a f\left( x \right) dx = \int_0^a f\left( a - x \right) dx\right]\]
\[ = \int_0^\frac{\pi}{2} \frac{\cos^n x}{\cos^n x + \sin^n x} dx \]
\[ = \int_0^\frac{\pi}{2} \frac{\cos^n x}{\sin^n x + \cos^n x} dx ...............(2)\]
\[\text{Adding (1) and (2) we get}\]
\[2I = \int_0^\frac{\pi}{2} \frac{\sin^n x}{\sin^n x + \cos^n x} + \frac{\cos^n x}{\sin^n x + \cos^n x} dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\sin^n x + \cos^n x}{\sin^n x + \cos^n x} dx\]
\[ = \int_0^\frac{\pi}{2} dx \]
\[ = \left[ x \right]_0^\frac{\pi}{2} = \frac{\pi}{2}\]
\[Hence\ I = \frac{\pi}{4}\]
\[i . e . , \int_0^\frac{\pi}{2} \frac{\sin^n x}{\sin^n x + \cos^n x} d x = \frac{\pi}{4}\]
\[ \therefore \int_0^\frac{\pi}{2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} d x = \frac{\pi}{4}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
If n > 0, then Γ(n) is
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`